11 research outputs found

    Genotypic and Environmental Effects on the Volatile Chemotype of Valeriana jatamansi Jones

    Get PDF
    Valeriana jatamansi Jones is an aromatic medicinal herb and important alternative to V. officinalis, which is utilized for medicinal purposes in China and India and also as spices in India. Bioactive ingredients of V. jatamansi vary in different regions. However, no information is currently available on influence of genotype and environmental factors in the volatile compounds, especially when germplasms and planting locations need to be selected. Based on the results of SNP and volatile constituents from GC-MS analysis, this study found various genotypes and chemotypes of V. jatamansi for wild plants from seven regions in China and common-garden samples; correlations between genotype and chemotype were revealed for the plants. Two distinct populations (PX, FY) were distinguishable from five others (GJ, YL, SY, DD, DY) according to their genotypes and volatile profiles, the consistency of which was observed showing that genotype could significantly influence chemotype. Wild populations and common-garden samples were also separated in their volatile profiles, demonstrating that environmental factors strongly affected their chemotypes. Compounds contributing to the discrimination were identified as discriminatory compounds. This investigation has explored and provided essential information concerning the correlation between genotype and chemotype as well as environmental factors and chemotype of V. jatamansi in some regions of China. Feasible plantation and conservation strategies of V. jatamansi could be further explored based on these results

    An Onboard Measurement System for Studying the Dynamic Running Characteristics of HTS Maglev

    No full text

    Correction Method for Logging Curves in Clay-Rich Tight Glutenite Reservoir: Upper Wuerhe Formation in Mahu Oilfield, China

    No full text
    Mahu Oilfield is the largest tight glutenite oilfield in the world, and the upper Wuerhe formation is an important succeeding exploration horizon. However, the upper Wuerhe formation in the Mahu 1 zone has a high clay content, which can lead to serious wellbore collapse. Meanwhile, the horizontal well logging is not corrected. These factors lead to the inconsistency between the logging interpretation results and the oil test results. The interpretation precision of the clay content, water saturation, and porosity, which are crucial to reservoir evaluation, is very low. In this paper, a workflow of logging curve correction using multiple methods is proposed. The multiple linear fitting is used to correct boreholes, and then histogram frequency distribution matching is used to standardize multi-well logging curves. Finally, the optimization method is used to build a volume model based on skeleton analysis, and the results are calibrated with core analysis results. Horizontal well density logs are corrected using adjacent vertical well logs. The interpretation results of clay content, water saturation, and porosity with high precision are obtained. The reservoir interpretation is more in line with the oil test results than the original interpretation. The clay content distribution is more reasonable

    Two new chalcones from <i>Shuteria sinensis</i>

    No full text
    <div><p>Two new chalcones, 2′,3,4,4′-tetrahydroxy-2-prenylchalcone (<b>1</b>) and 3-methoxy-2′,4,4′-trihydroxy-2-prenylchalcone (<b>2</b>), together with two known compounds, munsericin (<b>3</b>) and 3,4-dihydroxylonchocarpin (<b>4</b>), were isolated from the ethanol extract of the whole plant of <i>Shuteria sinensis</i>. Their structures were identified by spectroscopic analysis methods, such as 1D and 2D NMR, along with HR-MS data. Glucose metabolism activity of four compounds was tested, compounds <b>3</b> and <b>4</b> showed effect on the glucose consumption of insulin-resistant HepG2 cells.</p></div

    Table_2_Genotypic and Environmental Effects on the Volatile Chemotype of Valeriana jatamansi Jones.xls

    No full text
    <p>Valeriana jatamansi Jones is an aromatic medicinal herb and important alternative to V. officinalis, which is utilized for medicinal purposes in China and India and also as spices in India. Bioactive ingredients of V. jatamansi vary in different regions. However, no information is currently available on influence of genotype and environmental factors in the volatile compounds, especially when germplasms and planting locations need to be selected. Based on the results of SNP and volatile constituents from GC-MS analysis, this study found various genotypes and chemotypes of V. jatamansi for wild plants from seven regions in China and common-garden samples; correlations between genotype and chemotype were revealed for the plants. Two distinct populations (PX, FY) were distinguishable from five others (GJ, YL, SY, DD, DY) according to their genotypes and volatile profiles, the consistency of which was observed showing that genotype could significantly influence chemotype. Wild populations and common-garden samples were also separated in their volatile profiles, demonstrating that environmental factors strongly affected their chemotypes. Compounds contributing to the discrimination were identified as discriminatory compounds. This investigation has explored and provided essential information concerning the correlation between genotype and chemotype as well as environmental factors and chemotype of V. jatamansi in some regions of China. Feasible plantation and conservation strategies of V. jatamansi could be further explored based on these results.</p

    Image_1_Genotypic and Environmental Effects on the Volatile Chemotype of Valeriana jatamansi Jones.JPEG

    No full text
    <p>Valeriana jatamansi Jones is an aromatic medicinal herb and important alternative to V. officinalis, which is utilized for medicinal purposes in China and India and also as spices in India. Bioactive ingredients of V. jatamansi vary in different regions. However, no information is currently available on influence of genotype and environmental factors in the volatile compounds, especially when germplasms and planting locations need to be selected. Based on the results of SNP and volatile constituents from GC-MS analysis, this study found various genotypes and chemotypes of V. jatamansi for wild plants from seven regions in China and common-garden samples; correlations between genotype and chemotype were revealed for the plants. Two distinct populations (PX, FY) were distinguishable from five others (GJ, YL, SY, DD, DY) according to their genotypes and volatile profiles, the consistency of which was observed showing that genotype could significantly influence chemotype. Wild populations and common-garden samples were also separated in their volatile profiles, demonstrating that environmental factors strongly affected their chemotypes. Compounds contributing to the discrimination were identified as discriminatory compounds. This investigation has explored and provided essential information concerning the correlation between genotype and chemotype as well as environmental factors and chemotype of V. jatamansi in some regions of China. Feasible plantation and conservation strategies of V. jatamansi could be further explored based on these results.</p
    corecore