37 research outputs found

    Atmospheric oscillations on time scales of 1-2 months

    Get PDF
    Low-frequency oscillations in the troposphere and stratosphere on time scales of 1-2 months are observed in long time series of globally gridded temperature and geopotential height data. The stratosphere, rarely investigated for 1-2 month oscillations, is the main subject of this study. A combination of statistics and dynamics is used to capture three-dimensional wave motion characteristics and the influence of 1-2 month oscillations in changing the stratospheric mean zonal wind. Observations are compared with several models encompassing 1-2 month time scales;In Section II we calculate statistical significance in the power spectra of 1-2 month oscillations throughout the stratosphere from 90 hPa to 1.5 hPa; the results support other studies which show that the oscillation is significant throughout much of the stratosphere, particularly in the Southern Hemisphere. Under the hypothesis of an Indian Ocean tropical forcing, 1-2 month oscillations in the high stratosphere are presumed to originate from 1-2 month temperature fluctuations propagating out of the tropospheric heat source region; these tropical fluctuations propagate into the winter hemisphere midlatitudes, and then upward into the stratosphere, resulting in an out-then-up conceptual picture of the wave propagation;Section III is a continuation of Section II statistics and a previous study that discovered an extratropical 35-60 day wavetrain in 200 hPa Southern Hemisphere geopotential heights. In Section III, both troposphere and stratosphere are combined to substantiate the out-then-up conceptual picture from Section II. Using the statistics of correlation and coherence, the previously discovered 35-60 day 200 hPa wavetrain is shown to be statistically connected to the Indian Ocean-western Pacific Ocean tropics. Time-lag correlation plots will indicate both a forcing of the wavetrain from this region and a possible feedback into this region by the wavetrain itself. The coherence statistic will be shown to exhibit a dominance of 1-2 month over other periods of the spectrum. Finally, the contribution of 1-2 month eddies in changing the mean stratospheric flow is presented, both for a special case and for long-term (eight years)

    Analysis of Ozone in Cloudy Versus Clear Sky Conditions

    Get PDF
    Convection impacts ozone concentrations by transporting ozone vertically and by lofting ozone precursors from the surface, while the clouds and lighting associated with convection affect ozone chemistry. Observations of the above-cloud ozone column (Ziemke et al., 2009) derived from the OMI instrument show geographic variability, and comparison of the above-cloud ozone with all-sky tropospheric ozone columns from OMI indicates important regional differences. We use two global models of atmospheric chemistry, the GMI chemical transport model (CTM) and the GEOS-5 chemistry climate model, to diagnose the contributions of transport and chemistry to observed differences in ozone between areas with and without deep convection, as well as differences in clean versus polluted convective regions. We also investigate how the above-cloud tropospheric ozone from OMI can provide constraints on the relationship between ozone and convection in a free-running climate simulation as well as a CTM

    Comparison of Tropical Ozone from SHADOZ with Remote Sensing Retrievals from Suomi-npp Ozone Mapping Profile Suite (OMPS)

    Get PDF
    The Ozone Mapping Profile Suite (OMPS) was launched October 28, 2011 on-board the Suomi NPP satellite (http://npp.gsfc.nasa.gov). OMPS is the next generation total column ozone mapping instrument for monitoring the global distribution of stratospheric ozone. OMPS includes a limb profiler to measure the vertical structure of stratosphere ozone down to the mid-troposphere. This study uses tropical ozonesonde profile measurements from the Southern Hemisphere Additional Ozonesondes (SHADOZ, http://croc.gsfc.nasa.gov/shadoz) archive to evaluate total column ozone retrievals from OMPS and concurrent measurements from the Aura Ozone Monitoring Instrument (OMI), the predecessor of OMPS with a data record going back to 2004. We include ten SHADOZ stations that contain data overlapping the OMPS time period (2012-2013). This study capitalizes on the ozone profile measurements from SHADOZ to evaluate OMPS limb profile retrievals. Finally, we use SHADOZ sondes and OMPS retrievals to examine the agreement with the GEOS-5 Ozone Assimilation System (GOAS). The GOAS uses data from the OMI and the Microwave Limb Sounder (MLS) to constrain the total column and stratospheric profiles of ozone. The most recent version of the assimilation system is well constrained to the total column compared with SHADOZ ozonesonde data

    The Effect of Representing Bromine from VSLS on the Simulation and Evolution of Antarctic Ozone

    Get PDF
    We use the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM), a contributor to both the 2010 and 2014 WMO Ozone Assessment Reports, to show that inclusion of 5 parts per trillion (ppt) of stratospheric bromine(Br(sub y)) from very short lived substances (VSLS) is responsible for about a decade delay in ozone hole recovery. These results partially explain the significantly later recovery of Antarctic ozone noted in the 2014 report, as bromine from VSLS was not included in the 2010 Assessment. We show multiple lines of evidence that simulations that account for VSLS Br(sub y) are in better agreement with both total column BrO and the seasonal evolution of Antarctic ozone reported by the Ozone Monitoring Instrument (OMI) on NASAs Aura satellite. In addition, the near zero ozone levels observed in the deep Antarctic lower stratospheric polar vortex are only reproduced in a simulation that includes this Br(sub y) source from VSLS

    Recent Decline in Extratropical Lower Stratospheric Ozone Attributed to Circulation Changes

    Get PDF
    1998-2016 ozone trends in the lower stratosphere (LS) are examined using the Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2) and related NASA products. After removing biases resulting from step-changes in the MERRA-2 ozone observations, a discernible negative trend of -1.67+/-0.54 Dobson units per decade (DU/decade) is found in the 10-km layer above the tropopause between 20 deg N and 60 deg N. A weaker but statistically significant trend of -1.17+/-0.33 DU/decade exists between 50 deg S and 20 deg S. In the Tropics, a positive trend is seen in a 5-km layer above the tropopause. Analysis of an idealized tracer in a model simulation constrained by MERRA-2 meteorological fields provides strong evidence that these trends are driven by enhanced isentropic transport between the tropical (20 deg S20 deg N) and extratropical LS in the past two decades. This is the first time that a reanalysis dataset has been used to detect and attribute trends in lower stratospheric ozone. Plain Language Summary. Stratospheric ozone shields the biosphere from harmful ultraviolet radiation and affects the Earths radiative budget. Observational data show evidence that concentrations of ozone in the upper stratosphere have increased in the last 15 years. This is an expected result of the implementation of the Montreal Protocol and its amendments banning emissions of ozone depleting substances into the atmosphere. The evolution of stratospheric ozone is also impacted by climate change through its dependence on temperature and circulation, which can be different at different altitudes. These effects are less well understood. This study uses NASAs data and computer models to analyze the long-term changes in ozone since 1998. It is shown that the increase in the upper stratospheric ozone has been partially offset by a small but discernible decline of ozone concentrations in the lowermost stratosphere, in qualitative agreement with one recent study. A chemistry model simulation forced by meteorological data provides strong evidence that the primary mechanism driving this negative trend is an intensification of transport of ozone-poor air from the tropics into the extratropics, indicative of a systematic change in the lower-stratospheric circulation between 1998 and 2016

    Highlights from a Decade of OMI-TOMS Total Ozone Observations on EOS Aura

    Get PDF
    Total ozone measurements from OMI have been instrumental in meeting Aura science objectives. In the last decade, OMI has extended the length of the TOMS total ozone record to over 35 years to monitor stratospheric ozone recovery. OMI-TOMS total ozone measurements have also been combined synergistically with measurements from other Aura instruments and MLS in particular, which provides vertically resolved information that complements the total O3 mapping capability of OMI. With this combined approach, the EOS Aura platform has produced more accurate and detailed measurements of tropospheric ozone. This has led in turn to greater understanding of the sources and transport of tropospheric ozone as well as its radiative forcing effect. The combined use of OMI and MLS data was also vital to the analysis of the severe Arctic ozone depletion event of 2011. The quality of OMI-TOMS total O3 data used in these studies is the result of several factors: a mature and well-validated algorithm, the striking stability of the OMI instrument, and OMI's hyperspectral capabilities used to derive cloud pressures. The latter has changed how we think about the effects of clouds on total ozone retrievals. We will discuss the evolution of the operational V8.5 algorithm and provide an overview and motivation for V9. After reviewing results and developments of the past decade, we finally highlight how ozone observations from EOS Aura are playing an important role in new ozone mapping missions

    The Global Structure of UTLS Ozone in GEOS-5: A Multi-Year Assimilation of EOS Aura Data

    Get PDF
    Eight years of ozone measurements retrieved from the Ozone Monitoring Instrument (OMI) and the Microwave Limb Sounder, both on the EOS Aura satellite, have been assimilated into the Goddard Earth Observing System version 5 (GEOS-5) data assimilation system. This study thoroughly evaluates this assimilated product, highlighting its potential for science. The impact of observations on the GEOS-5 system is explored by examining the spatial distribution of the observation-minus-forecast statistics. Independent data are used for product validation. The correlation coefficient of the lower-stratospheric ozone column with ozonesondes is 0.99 and the bias is 0.5%, indicating the success of the assimilation in reproducing the ozone variability in that layer. The upper-tropospheric assimilated ozone column is about 10% lower than the ozonesonde column but the correlation is still high (0.87). The assimilation is shown to realistically capture the sharp cross-tropopause gradient in ozone mixing ratio. Occurrence of transport-driven low ozone laminae in the assimilation system is similar to that obtained from the High Resolution Dynamics Limb Sounder (HIRDLS) above the 400 K potential temperature surface but the assimilation produces fewer laminae than seen by HIRDLS below that surface. Although the assimilation produces 5 - 8 fewer occurrences per day (up to approximately 20%) during the three years of HIRDLS data, the interannual variability is captured correctly. This data-driven assimilated product is complementary to ozone fields generated from chemistry and transport models. Applications include study of the radiative forcing by ozone and tracer transport near the tropopause

    A Cloud-Ozone Data Product from Aura OMI and MLS Satellite Measurements

    Get PDF
    Ozone within deep convective clouds is controlled by several factors involving photochemical reactions and transport. Gas-phase photochemical reactions and heterogeneous surface chemical reactions involving ice, water particles, and aerosols inside the clouds all contribute to the distribution and net production and loss of ozone. Ozone in clouds is also dependent on convective transport that carries low troposphereboundary layer ozone and ozone precursors upward into the clouds. Characterizing ozone in thick clouds is an important step for quantifying relationships of ozone with tropospheric H2O, OH production, and cloud microphysicstransport properties. Although measuring ozone in deep convective clouds from either aircraft or balloon ozonesondes is largely impossible due to extreme meteorological conditions associated with these clouds, it is possible to estimate ozone in thick clouds using backscattered solar UV radiation measured by satellite instruments. Our study combines Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) satellite measurements to generate a new research product of monthly-mean ozone concentrations in deep convective clouds between 30oS to 30oN for October 2004 April 2016. These measurements represent mean ozone concentration primarily in the upper levels of thick clouds and reveal key features of cloud ozone including: persistent low ozone concentrations in the tropical Pacific of 10 ppbv or less; concentrations of up to 60 pphv or greater over landmass regions of South America, southern Africa, Australia, and Indiaeast Asia; connections with tropical ENSO events; and intra-seasonalMadden-Julian Oscillation variability. Analysis of OMI aerosol measurements suggests a cause and effect relation between boundary layer pollution and elevated ozone inside thick clouds over land-mass regions including southern Africa and Indiaeast Asia

    Trajectory mapping: A tool for validation of trace gas observations

    Get PDF
    We investigate the effectiveness of trajectory mapping(TM) as a data validation tool. TM combines a dynamical model of the atmosphere with trace gas observations to provide more statistically robust estimates of instrument performance over much broader geographic areas than traditional techniques are able to provide. We present four detailed case studies selected so that the traditional techniques are expected to work well. In each case the TM results are equivalent to or improve upon the measurement comparisons performed with traditional approaches. The TM results are statistically more robust than those achieved using traditional approaches since the TM comparisons occur over a much larger range of geophysical variability. In the first case study we compare ozone data from the Halogen Occultation Experiment (HALOE) with Microwave Limb Sounder(MLS). TM comparisons appear to introduce little to no error as compared to the traditional approach. In the second case study we compare ozone data from HALOE with that from the Stratospheric Aerosol and Gas Experiment TT(SAGE TT). TM results in differences of less than 5% as compared to the traditional approach at altitudes between 18 and 25 km and less than 10% at altitudes between 25 and 40 km.In the third case study we show that ozone profiles generated from HALOE data using TM compare well with profiles from five European ozonesondes. In the fourth case study we evaluate the precision of MLS H20 using TM and find typical precision uncertainties of 3-7% at most latitudes and altitudes. The TM results agree well with previous estimates but are the result of a global analysis of the data rather than an analysis in the limited latitude bands in which traditional approaches work. Finally, sensitivity studies using the MLS H20 data show the following: (1) a combination of forward and backward trajectory calculations minimize uncertainties in isentropic TM; (2) although the uncertainty of the technique increases with trajectory duration,TM calculations of up to 14 days can provide reliable information for use in data validation studies; (3) a correlation coincidence criterion of 400 km produces the best TM results under most circumstances; (4) TM performs well compared to (and sometimes better than) traditional approaches at all latitudes and in most seasons and; (5) TM introduces no statistically significant biases at altitudes between 22 and 40 km

    Multidecadal Changes in the UTLS Ozone from the MERRA-2 Reanalysis and the GMI Chemistry Model

    Get PDF
    Long-term changes of ozone in the UTLS (Upper Troposphere / Lower Stratosphere) reflect the response to decreases in the stratospheric concentrations of ozone-depleting substances as well as changes in the stratospheric circulation induced by climate change. To date, studies of UTLS ozone changes and variability have relied mainly on satellite and in-situ observations as well as chemistry-climate model simulations. By comparison, the potential of reanalysis ozone data remains relatively untapped. This is despite evidence from recent studies, including detailed analyses conducted under SPARC (Scalable Processor Architecture) Reanalysis Intercomparison Project (S-RIP), that demonstrate that stratospheric ozone fields from modern atmospheric reanalyses exhibit good agreement with independent data while delineating issues related to inhomogeneities in the assimilated observations. In this presentation, we will explore the possibility of inferring long-term geographically and vertically resolved behavior of the lower stratospheric (LS) ozone from NASA's MERRA-2 (Modern-Era Retrospective Analysis for Research and Applications -2) reanalysis after accounting for the few known discontinuities and gaps in its assimilated input data. This work builds upon previous studies that have documented excellent agreement between MERRA-2 ozone and ozonesonde observations in the LS. Of particular importance is a relatively good vertical resolution of MERRA-2 allowing precise separation of tropospheric and stratospheric ozone contents. We also compare the MERRA-2 LS ozone results with the recently completed 37-year simulation produced using Goddard Earth Observing System in "replay" mode coupled with the GMI (Global Modeling Initiative) chemistry mechanism. Replay mode dynamically constrains the model with the MERRA-2 reanalysis winds, temperature, and pressure. We will emphasize the areas of agreement of the reanalysis and replay and interpret differences between them in the context of our increasing understanding of model transport driven by assimilated winds
    corecore