41 research outputs found

    Photoperiod Influences Growth and mll (Mixed-Lineage Leukaemia) Expression in Atlantic Cod

    Get PDF
    Photoperiod is associated to phenotypic plasticity of somatic growth in several teleost species. However, the molecular mechanisms underlying this phenomenon are currently unknown but it is likely that epigenetic regulation by methyltransferases is involved. The MLL (mixed-lineage leukaemia) family comprises histone methyltransferases that play a critical role in regulating gene expression during early development in mammals. So far, these genes have received scant attention in teleost fish. In the present study, the mean weight of Atlantic cod juveniles reared under continuous illumination was found to be 13% greater than those kept under natural photoperiod conditions for 120 days. We newly determined cDNA sequences of five mll (mll1, mll2, mll3a, mll4b and mll5) and two setd1 (setd1a and setd1ba) paralogues from Atlantic cod. Phylogenetic analysis revealed that the cod genes clustered within the appropriate mll clade and comparative mapping of mll paralogues showed that these genes lie within a region of conserved synteny among teleosts. All mll and setd1 genes were highly expressed in gonads and fast muscle of adult cod, albeit at different levels, and they were differentially regulated with photoperiod in muscle of juvenile fish. Following only one day of exposure to constant light, mll1, mll4b and setd1a were up to 57% lower in these fish compared to the natural photoperiod group. In addition, mRNA expression of myogenic regulatory factors (myog and myf-5) and pax7 in fast muscle was also affected by different photoperiod conditions. Notably, myog was significantly elevated in the continuous illumination group throughout the time course of the experiment. The absence of a day/night cycle is associated with a generalised decrease in mll expression concomitant with an increase in myog transcript levels in fast muscle of Atlantic cod, which may be involved in the observed epigenetic regulation of growth by photoperiod in this species

    Influence of Genetic Background and Tissue Types on Global DNA Methylation Patterns

    Get PDF
    Recent studies have shown a genetic influence on gene expression variation, chromatin, and DNA methylation. However, the effects of genetic background and tissue types on DNA methylation at the genome-wide level have not been characterized extensively. To study the effect of genetic background and tissue types on global DNA methylation, we performed DNA methylation analysis using the Affymetrix 500K SNP array on tumor, adjacent normal tissue, and blood DNA from 30 patients with esophageal squamous cell carcinoma (ESCC). The use of multiple tissues from 30 individuals allowed us to evaluate variation of DNA methylation states across tissues and individuals. Our results demonstrate that blood and esophageal tissues shared similar DNA methylation patterns within the same individual, suggesting an influence of genetic background on DNA methylation. Furthermore, we showed that tissue types are important contributors of DNA methylation states

    Inhibitor of caspase-activated DNase expression enhances caspase-activated DNase expression and inhibits oxidative stress-induced chromosome breaks at the mixed lineage leukaemia gene in nasopharyngeal carcinoma cells

    Get PDF
    BACKGROUND: Nasopharyngeal carcinoma (NPC) is commonly found in Asia, especially among the Chinese ethnic group. Chromosome rearrangements are common among NPC patients. Although the mechanism underlying the chromosome rearrangements in NPC is unclear, various mechanisms including activation of caspase-activated DNase (CAD) were proposed to contribute to chromosome rearrangements in leukaemia. Activation of CAD can be initiated by multiple agents, including oxidative stress, which is well implicated in carcinogenesis. CAD is the main enzyme that causes DNA fragmentation during apoptosis, and CAD is also implicated in promoting cell differentiation. In view of the role of oxidative stress in carcinogenesis and CAD activation, and since CAD was suggested to contribute to chromosome rearrangement in leukaemia, we hypothesise that oxidative stress-induced CAD activation could be one of the mechanisms that leads to chromosome rearrangements in NPC. METHODS: SUNEI cells were treated with various concentrations of H(2)O(2) for different period of time to ensure that cells undergo H(2)O(2)-induced MLL gene cleavage. Transfections with hCAD, mCAD, mutant hCAD, or cotransfection with hCAD and mICAD, and cotransfection with mutant hCAD and mICAD were performed. Gene expression was confirmed by Western blotting and MLL gene cleavage was assessed by inverse polymerase chain reaction (IPCR). RESULTS: Treatment with H(2)O(2) clearly induces cleavages within the MLL gene which locates at 11q23, a common deletion site in NPC. In order to investigate the role of CAD, CAD was overexpressed in SUNE1 cells, but that did not result in significant changes in H(2)O(2)-induced MLL gene cleavage. This could be because CAD requires ICAD for proper folding. Indeed, by overexpressing ICAD alone or co-expressing ICAD with CAD, Western blotting showed that CAD was expressed. In addition, ICAD overexpression also suppressed H(2)O(2)-induced MLL gene cleavage, suggesting a possible role of CAD in initiating chromosome cleavage during oxidative stress. CONCLUSIONS: Oxidative stress mediated by H(2)O(2) induces cleavage of the MLL gene, most likely via the caspase-activated DNase, CAD, and CAD expression requires ICAD. Since the MLL gene is located at 11q23, a common deletion site in NPC, thus stress-induced CAD activation may represent one of the mechanisms leading to chromosome rearrangement in NPC

    Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias

    No full text
    Recurring chromosomal translocations involving chromosome 11, band q23, have been observed in acute lymphoid leukemias and especially in acute myeloid leukemias. We recently showed that breakpoints in four 11q23 translocations, t(4;11)(q21;q23), t(6;11)(q27;q23), t(9;11)(p22;q23), and t(11;19)(q23;p13.3), were contained within a yeast artificial chromosome clone bearing the CD3D and CD3G gene loci. We have identified within the CD3 yeast artificial chromosome a transcription unit that spans the breakpoint junctions of the 4;11, 9;11, and 11;19 translocations, and we describe two other, related transcripts that are upregulated in the RS4;11 cell line. We have named this gene MLL (myeloid/lymphoid, or mixed-lineage, leukemia

    Cloning of cDNAs of the MLL gene that detect DNA rearrangements and altered RNA transcripts in human leukemic cells with 11q23 translocations

    No full text
    Recurring chromosomal abnormalities involving translocations at chromosome 11 band q23 are associated with human myeloid and lymphoid leukemia as well as lymphoma. We have identified the gene located at this break-point and have named it MLL (for myeloid-lymphoid, or mixed-lineage, leukemia). The t(4;11), t(6;11), t(9;11), and t(11;19) are among the most common reciprocal translocations in leukemia cells involving this chromosomal band. We now have evidence that the breakpoints in all of these translocations are clustered within a 9-kilobase (kb) BamHI genomic region of the MLL gene. By Southern blot hybridization using a 0.7-kb BamHI cDNA fragment of the MLL gene called MLL 0.7B, we have detected rearrangements of DNA from cell lines and patient material with an 11q23 translocation in this region. Northern blot analyses indicate that this gene has multiple transcripts, some of which appear to be lineage-specific. In normal pre-B cells, four transcripts of 12.5, 12.0, 11.5, and 2.0 kb are detected. These transcripts are also present in monocytoid cell lines with additional hybridization to a 5.0-kb transcript, indicating that expression of different-sized MLL transcripts may be associated with normal hematopoietic lineage development. In a cell line with a t(4;11), the expression of the 12.5-, 12.0-, and 11.5-kb transcripts is reduced, and there is evidence of three other altered transcripts of 11.5, 11.25, and 11.0 kb. Thus, these 11q23 translocations result in rearrangements of the MLL gene and may lead to altered function(s) of MLL and of other gene(s) involved in the translocation

    International Federation of Gynecology and Obstetrics opinion on reproductive health impacts of exposure to toxic environmental chemicals.

    No full text
    Exposure to toxic environmental chemicals during pregnancy and breastfeeding is ubiquitous and is a threat to healthy human reproduction. There are tens of thousands of chemicals in global commerce, and even small exposures to toxic chemicals during pregnancy can trigger adverse health consequences. Exposure to toxic environmental chemicals and related health outcomes are inequitably distributed within and between countries; universally, the consequences of exposure are disproportionately borne by people with low incomes. Discrimination, other social factors, economic factors, and occupation impact risk of exposure and harm. Documented links between prenatal exposure to environmental chemicals and adverse health outcomes span the life course and include impacts on fertility and pregnancy, neurodevelopment, and cancer. The global health and economic burden related to toxic environmental chemicals is in excess of millions of deaths and billions of dollars every year. On the basis of accumulating robust evidence of exposures and adverse health impacts related to toxic environmental chemicals, the International Federation of Gynecology and Obstetrics (FIGO) joins other leading reproductive health professional societies in calling for timely action to prevent harm. FIGO recommends that reproductive and other health professionals advocate for policies to prevent exposure to toxic environmental chemicals, work to ensure a healthy food system for all, make environmental health part of health care, and champion environmental justice
    corecore