7 research outputs found

    New Insulin Glargine 300 Units/mL Versus Glargine 100 Units/mL in People With Type 1 Diabetes: A Randomized, Phase 3a, Open-Label Clinical Trial (EDITION 4)

    Get PDF
    OBJECTIVE Insulin therapy in type 1 diabetes still provides suboptimal outcomes. Insulin glargine 300 units/mL (Gla-300), with a flatter pharmacodynamic profile compared with insulin glargine 100 units/mL (Gla-100), is an approach to this problem. RESEARCH DESIGN AND METHODS People with type 1 diabetes, using a mealtime and basal insulin regimen, were randomized open-label to Gla-300 or Gla-100 and to morning or evening injection, continuing the mealtime analog, and followed for 6 months. RESULTS Participants (n = 549) were a mean age of 47 years and had a mean duration of diabetes of 21 years and BMI of 27.6 kg/m2. The change in HbA1c (primary end point; baseline 8.1%) was equivalent in the two treatment groups (difference, 0.04% [95% CI −0.10 to 0.19]) (0.4 mmol/mol [−1.1 to 2.1]), and Gla-300 was thus noninferior. Similar results with wider 95% CIs were found for morning and evening injection times and for prebreakfast self-measured plasma glucose (SMPG) overall. Results were also similar for Gla-300 when morning and evening injection time was compared, including overlapping 8-point SMPG profiles. Hypoglycemia did not differ, except for the first 8 weeks of the study, when nocturnal confirmed or severe hypoglycemia was lower with Gla-300 (rate ratio 0.69 [95% CI 0.53–0.91]). Hypoglycemia with Gla-300 did not differ by time of injection. The basal insulin dose was somewhat higher at 6 months for Gla-300. The adverse event profile did not differ and was independent of the Gla-300 time of injection. Weight gain was lower with Gla-300. CONCLUSIONS In long-duration type 1 diabetes, Gla-300 provides similar glucose control to Gla-100, with a lower risk of hypoglycemia after transfer from other insulins, independent of time of injection, and less weight gain

    Efficacy and Safety of Flexible Versus Fixed Dosing Intervals of Insulin Glargine 300 U/mL in People with Type 2 Diabetes

    Get PDF
    Background: Insulin glargine 300 U/mL (Gla-300) has a more constant and prolonged action profile than insulin glargine 100 U/mL and in clinical studies is associated with similar glycemic control but less hypoglycemia. Whether its effects are altered by variability of injection time was examined in two 3-month substudies. Materials and Methods: Eligible participants completing 6 months of optimized treatment with Gla-300 in EDITION 1 (n = 109) and EDITION 2 (n = 89), having a mean hemoglobin A1c (HbA(1c)) level of 7.3 % (SD 1.0 %), were randomized (1:1) to groups advised to increase variability of between-injection intervals to 24 +/- up to 3 h or to maintain fixed 24-h intervals for 3 months. Changes of HbA(1c) level and other efficacy and safety measures were assessed. Results: In the fixed-dosing group, 64% of participants reported all intervals within the 23-25-h range, compared with 15% of those advised flexible dosing. In the fixed- and flexible-dosing groups, 12% and 41%, respectively, of between-injection intervals were outside the 23-25-h range, and 2% and 16%, respectively, were outside the 21-27-h range. Least squares mean between-group difference in HbA(1c) change from baseline was 0.05 % (95% confidence interval [CI], -0.13 to 0.23); for fasting plasma glucose, 2.7 mg/dL (95% CI, -9.0 to 14.4); and for daily basal insulin dose, 0.00 U/kg (95% CI, -0.02 to 0.03). Frequencies of hypoglycemia and adverse events did not differ between groups. Conclusions: The efficacy and safety of Gla-300 demonstrated in EDITION 1 and EDITION 2 are maintained in substudies when the insulin was injected up to 3 h before or after the usual time of administration.Peer reviewe

    ICON-Sapphire: simulating the components of the Earth system and their interactions at kilometer and subkilometer scales

    No full text
    International audienceState-of-the-art Earth system models typically employ grid spacings of O(100 km), which is too coarse to explicitly resolve main drivers of the flow of energy and matter across the Earth system. In this paper, we present the new ICON-Sapphire model configuration, which targets a representation of the components of the Earth system and their interactions with a grid spacing of 10 km and finer. Through the use of selected simulation examples, we demonstrate that ICON-Sapphire can (i) be run coupled globally on seasonal timescales with a grid spacing of 5 km, on monthly timescales with a grid spacing of 2.5 km, and on daily timescales with a grid spacing of 1.25 km; (ii) resolve large eddies in the atmosphere using hectometer grid spacings on limited-area domains in atmosphere-only simulations; (iii) resolve submesoscale ocean eddies by using a global uniform grid of 1.25 km or a telescoping grid with the finest grid spacing at 530 m, the latter coupled to a uniform atmosphere; and (iv) simulate biogeochemistry in an ocean-only simulation integrated for 4 years at 10 km. Comparison of basic features of the climate system to observations reveals no obvious pitfalls, even though some observed aspects remain difficult to capture. The throughput of the coupled 5 km global simulation is 126 simulated days per day employing 21 % of the latest machine of the German Climate Computing Center. Extrapolating from these results, multi-decadal global simulations including interactive carbon are now possible, and short global simulations resolving large eddies in the atmosphere and submesoscale eddies in the ocean are within reach

    ICON-Sapphire: simulating the components of the Earth system and their interactions at kilometer and subkilometer scales

    No full text
    International audienceState-of-the-art Earth system models typically employ grid spacings of O(100 km), which is too coarse to explicitly resolve main drivers of the flow of energy and matter across the Earth system. In this paper, we present the new ICON-Sapphire model configuration, which targets a representation of the components of the Earth system and their interactions with a grid spacing of 10 km and finer. Through the use of selected simulation examples, we demonstrate that ICON-Sapphire can (i) be run coupled globally on seasonal timescales with a grid spacing of 5 km, on monthly timescales with a grid spacing of 2.5 km, and on daily timescales with a grid spacing of 1.25 km; (ii) resolve large eddies in the atmosphere using hectometer grid spacings on limited-area domains in atmosphere-only simulations; (iii) resolve submesoscale ocean eddies by using a global uniform grid of 1.25 km or a telescoping grid with the finest grid spacing at 530 m, the latter coupled to a uniform atmosphere; and (iv) simulate biogeochemistry in an ocean-only simulation integrated for 4 years at 10 km. Comparison of basic features of the climate system to observations reveals no obvious pitfalls, even though some observed aspects remain difficult to capture. The throughput of the coupled 5 km global simulation is 126 simulated days per day employing 21 % of the latest machine of the German Climate Computing Center. Extrapolating from these results, multi-decadal global simulations including interactive carbon are now possible, and short global simulations resolving large eddies in the atmosphere and submesoscale eddies in the ocean are within reach

    ICON-Sapphire: simulating the components of the Earth system and their interactions at kilometer and subkilometer scales

    No full text
    International audienceState-of-the-art Earth system models typically employ grid spacings of O(100 km), which is too coarse to explicitly resolve main drivers of the flow of energy and matter across the Earth system. In this paper, we present the new ICON-Sapphire model configuration, which targets a representation of the components of the Earth system and their interactions with a grid spacing of 10 km and finer. Through the use of selected simulation examples, we demonstrate that ICON-Sapphire can (i) be run coupled globally on seasonal timescales with a grid spacing of 5 km, on monthly timescales with a grid spacing of 2.5 km, and on daily timescales with a grid spacing of 1.25 km; (ii) resolve large eddies in the atmosphere using hectometer grid spacings on limited-area domains in atmosphere-only simulations; (iii) resolve submesoscale ocean eddies by using a global uniform grid of 1.25 km or a telescoping grid with the finest grid spacing at 530 m, the latter coupled to a uniform atmosphere; and (iv) simulate biogeochemistry in an ocean-only simulation integrated for 4 years at 10 km. Comparison of basic features of the climate system to observations reveals no obvious pitfalls, even though some observed aspects remain difficult to capture. The throughput of the coupled 5 km global simulation is 126 simulated days per day employing 21 % of the latest machine of the German Climate Computing Center. Extrapolating from these results, multi-decadal global simulations including interactive carbon are now possible, and short global simulations resolving large eddies in the atmosphere and submesoscale eddies in the ocean are within reach
    corecore