200 research outputs found

    Membrane Docking Geometry of GRP1 PH Domain Bound to a Target Lipid Bilayer: An EPR Site-Directed Spin-Labeling and Relaxation Study

    Get PDF
    The second messenger lipid PIP3 (phosphatidylinositol-3,4,5-trisphosphate) is generated by the lipid kinase PI3K (phosphoinositide-3-kinase) in the inner leaflet of the plasma membrane, where it regulates a broad array of cell processes by recruiting multiple signaling proteins containing PIP3-specific pleckstrin homology (PH) domains to the membrane surface. Despite the broad importance of PIP3-specific PH domains, the membrane docking geometry of a PH domain bound to its target PIP3 lipid on a bilayer surface has not yet been experimentally determined. The present study employs EPR site-directed spin labeling and relaxation methods to elucidate the membrane docking geometry of GRP1 PH domain bound to bilayer-embedded PIP3. The model target bilayer contains the neutral background lipid PC and both essential targeting lipids: (i) PIP3 target lipid that provides specificity and affinity, and (ii) PS facilitator lipid that enhances the PIP3 on-rate via an electrostatic search mechanism. The EPR approach measures membrane depth parameters for 18 function-retaining spin labels coupled to the PH domain, and for calibration spin labels coupled to phospholipids. The resulting depth parameters, together with the known high resolution structure of the co-complex between GRP1 PH domain and the PIP3 headgroup, provide sufficient constraints to define an optimized, self-consistent membrane docking geometry. In this optimized geometry the PH domain engulfs the PIP3 headgroup with minimal bilayer penetration, yielding the shallowest membrane position yet described for a lipid binding domain. This binding interaction displaces the PIP3 headgroup from its lowest energy position and orientation in the bilayer, but the headgroup remains within its energetically accessible depth and angular ranges. Finally, the optimized docking geometry explains previous biophysical findings including mutations observed to disrupt membrane binding, and the rapid lateral diffusion observed for PIP3-bound GRP1 PH domain on supported lipid bilayers

    Innovation and Access to Medicines for Neglected Populations: Could a Treaty Address a Broken Pharmaceutical R&D System?

    Get PDF
    As part of a cluster of articles leading up to the 2012 World Health Report and critically reflecting on the theme of “no health without research,” Suerie Moon and colleagues argue for a global health R&D treaty to improve innovation in new medicines and strengthening affordability, sustainable financing, efficiency in innovation, and equitable health-centered governance

    Finding the essential : improving conservation monitoring across scales

    Get PDF
    To account for progress towards conservation targets, monitoring systems should capture not only information on biodiversity but also knowledge on the dynamics of ecological processes and the related effects on human well-being. Protected areas represent complex social-ecological systems with strong human-nature interactions. They are able to provide relevant information about how global and local scale drivers (e.g., climate change, land use change) impact biodiversity and ecosystem services. Here we develop a framework that uses an ecosystem-focused approach to support managers in identifying essential variables in an integrated and scalable approach. We advocate that this approach can complement current essential variable developments, by allowing conservation managers to draw on system-level knowledge and theory of biodiversity and ecosystems to identify locally important variables that meet the local or sub-global needs for conservation data. This requires the development of system narratives and causal diagrams that pinpoints the social-ecological variables that represent the state and drivers of the different components, and their relationships. We describe a scalable framework that builds on system based narratives to describe all system components, the models used to represent them and the data needed. Considering the global distribution of protected areas, with an investment in standards, transparency, and on active data mobilisation strategies for essential variables, these have the potential to be the backbone of global biodiversity monitoring, benefiting countries, biodiversity observation networks and the global biodiversity community

    Reconciling Assumptions in Bottom-Up and Top-Down Approaches for Estimating Aerosol Emission Rates From Wildland Fires Using Observations From FIREX-AQ

    Get PDF
    Accurate fire emissions inventories are crucial to predict the impacts of wildland fires on air quality and atmospheric composition. Two traditional approaches are widely used to calculate fire emissions: a satellite-based top-down approach and a fuels-based bottom-up approach. However, these methods often considerably disagree on the amount of particulate mass emitted from fires. Previously available observational datasets tended to be sparse, and lacked the statistics needed to resolve these methodological discrepancies. Here, we leverage the extensive and comprehensive airborne in situ and remote sensing measurements of smoke plumes from the recent Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) campaign to statistically assess the skill of the two traditional approaches. We use detailed campaign observations to calculate and compare emission rates at an exceptionally high-resolution using three separate approaches: top-down, bottom-up, and a novel approach based entirely on integrated airborne in situ measurements. We then compute the daily average of these high-resolution estimates and compare with estimates from lower resolution, global top-down and bottom-up inventories. We uncover strong, linear relationships between all of the high-resolution emission rate estimates in aggregate, however no single approach is capable of capturing the emission characteristics of every fire. Global inventory emission rate estimates exhibited weaker correlations with the high-resolution approaches and displayed evidence of systematic bias. The disparity between the low-resolution global inventories and the high-resolution approaches is likely caused by high levels of uncertainty in essential variables used in bottom-up inventories and imperfect assumptions in top-down inventories

    One step forward, one step sideways? Expanding research capacity for neglected diseases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is general agreement, including from the pharmaceutical industry, that current market based methods of generating research into the development of pharmaceutical products that are relevant for developing countries do not work. This conclusion is relevant not just for the most neglected diseases such as leishmaniasis but even for global diseases such as cancer and cardiovascular disease.</p> <p>Discussion</p> <p>Stimulating research will mean overcoming barriers such as patent thickets, poor coordination of research activities, exclusive licensing of new technologies by universities and the structural problems that inhibit conducting appropriate clinical trials in developing countries. In addition, it is necessary to ensure that the priorities for research reflect the needs of developing countries and not just donors. This article will explore each of these issues and then look at three emerging approaches to stimulating research -paying for innovation, priority review sales or vouchers and public-private partnerships, - and evaluate their strengths and weaknesses.</p> <p>Summary</p> <p>All of the stakeholders agree that there is a pressing need for a major expansion in the level of R&D. Whatever that new model turns out to be, it will have to deal with the 5 barriers outlined in this paper. Finally, none of the three proposals considered here for expanding research is free from major limitations.</p
    • 

    corecore