545 research outputs found

    An Artificially Lattice Mismatched Graphene/Metal Interface: Graphene/Ni/Ir(111)

    Get PDF
    We report the structural and electronic properties of an artificial graphene/Ni(111) system obtained by the intercalation of a monoatomic layer of Ni in graphene/Ir(111). Upon intercalation, Ni grows epitaxially on Ir(111), resulting in a lattice mismatched graphene/Ni system. By performing Scanning Tunneling Microscopy (STM) measurements and Density Functional Theory (DFT) calculations, we show that the intercalated Ni layer leads to a pronounced buckling of the graphene film. At the same time an enhanced interaction is measured by Angle-Resolved Photo-Emission Spectroscopy (ARPES), showing a clear transition from a nearly-undisturbed to a strongly-hybridized graphene π\pi-band. A comparison of the intercalation-like graphene system with flat graphene on bulk Ni(111), and mildly corrugated graphene on Ir(111), allows to disentangle the two key properties which lead to the observed increased interaction, namely lattice matching and electronic interaction. Although the latter determines the strength of the hybridization, we find an important influence of the local carbon configuration resulting from the lattice mismatch.Comment: 9 pages, 3 figures, Accepted for publication in Phys. Rev.

    Multi-resolution image analysis for vehicle detection

    Get PDF
    Proceeding of: Second Iberian Conference, IbPRIA 2005, Estoril, Portugal, June 7-9, 2005Computer Vision can provide a great deal of assistance to Intelligent Vehicles. In this paper an Advanced Driver Assistance Systems for Vehicle Detection is presented. A geometric model of the vehicle is defined where its energy function includes information of the shape and symmetry of the vehicle and the shadow it produces. A genetic algorithm finds the optimum parameter values. As the algorithm receives information from a road detection module some geometric restrictions can be applied. A multi-resolution approach is used to speed up the algorithm and work in realtime. Examples of real images are shown to validate the algorithm.Publicad

    Surface passivation of silicon solar cells using industrially relevant Al2O3 deposition techniques

    Get PDF
    The next generation of industrial silicon solar cells aims at efficiencies of 20% and above. To achieve this goal using ever-thinner silicon wafers, a highly effective surface passivation of the cell front and rear is required. In the past, finding a suitable dielectric layer providing a high-quality rear passivation has been a major challenge. Aluminium oxide (Al2O3) grown by atomic layer deposition (ALD) has only recently turned out to be a nearly perfect candidate for such a dielectric. However, conventional ALD is limited to deposition rates well below 2nm/min, which is incompatible with industrial solar cell production. This paper assesses the passivation quality provided by three different industrially relevant techniques for the deposition of Al2O3 layers, namely high-rate spatial ALD, plasma-enhanced chemical vapour deposition (PECVD) and reactive sputtering

    Targeted correction of a thalassemia-associated β-globin mutation induced by pseudo-complementary peptide nucleic acids

    Get PDF
    β-Thalassemia is a genetic disorder caused by mutations in the β-globin gene. Triplex-forming oligonucleotides and triplex-forming peptide nucleic acids (PNAs) have been shown to stimulate recombination in mammalian cells via site-specific binding and creation of altered helical structures that provoke DNA repair. However, the use of these molecules for gene targeting requires homopurine tracts to facilitate triple helix formation. Alternatively, to achieve binding to mixed-sequence target sites for the induced gene correction, we have used pseudo-complementary PNAs (pcPNAs). Due to steric hindrance, pcPNAs are unable to form pcPNA–pcPNA duplexes but can bind to complementary DNA sequences via double duplex-invasion complexes. We demonstrate here that pcPNAs, when co-transfected with donor DNA fragments, can promote single base pair modification at the start of the second intron of the beta-globin gene. This was detected by the restoration of proper splicing of transcripts produced from a green fluorescent protein-beta globin fusion gene. We also demonstrate that pcPNAs are effective in stimulating recombination in human fibroblast cells in a manner dependent on the nucleotide excision repair factor, XPA. These results suggest that pcPNAs can be effective tools to induce heritable, site-specific modification of disease-related genes in human cells without purine sequence restriction

    Improving MCS Enumeration via Caching

    Get PDF
    Enumeration of minimal correction sets (MCSes) of conjunctive normal form formulas is a central and highly intractable problem in infeasibility analysis of constraint systems. Often complete enumeration of MCSes is impossible due to both high computational cost and worst-case exponential number of MCSes. In such cases partial enumeration is sought for, finding applications in various domains, including axiom pinpointing in description logics among others. In this work we propose caching as a means of further improving the practical efficiency of current MCS enumeration approaches, and show the potential of caching via an empirical evaluation.Peer reviewe

    Frequency domain analysis for detecting pipeline leaks

    Get PDF
    The original publication can be found at http://scitation.aip.org/hyoThis paper introduces leak detection methods that involve the injection of a fluid transient into the pipeline, with the resultant transient trace analyzed in the frequency domain. Two methods of leak detection using the frequency response of the pipeline are proposed. The inverse resonance method involves matching the modeled frequency responses to those observed to determine the leak parameters. The peak-sequencing method determines the region in which the leak is located by comparing the relative sizes between peaks in the frequency response diagram. It was found that a unique pattern was induced on the peaks of the frequency response for each specific location of the leak within the pipeline. The leak location can be determined by matching the observed pattern to patterns generated numerically within a lookup table. The procedure for extracting the linear frequency response diagram, including the optimum measurement position, the effect of unsteady friction, and the way in which the technique can be extended into pipeline networks, are also discussed within the paper.Pedro J. Lee, John P. Vítkovský, Martin F. Lambert, Angus R. Simpson and James A. Ligget

    High glucose inhibits human epidermal keratinocyte proliferation for cellular studies on diabetes mellitus

    Full text link
    In order to more clarify the delayed wound healing in diabetes mellitus, we cultured the human epidermal keratinocytes in both 6 mM (control group) and 12 mM glucose (high-glucose group) of ‘complete’ MCDB 153 medium. Hyperglycaemia slowed the rate of their proliferation and inhibited their DNA synthesis and the production of total proteins. By 1 month after primary seeding in high-glucose group, the cells ceased their proliferation, whereas the cells in control group grew for more than 40 days. Mean population doublings in high-glucose group was 5·27 (vs. 7·25 in control, P = 0·001), and mean population doubling time during 1 month in high glucose group was 5·43 days (vs. 3·65 days in control, P = 0·02). They indicate that prolonged exposure to high glucose decreases the replicative life span of human epidermal keratinocytes in vitro. Furthermore, analysis of fatty acid contents in membrane phospholipids with thin-layer and gas chromatography showed no difference between the cultured keratinocytes in both conditions. Immunocytochemical staining of glucose transporter 1 shows that 28·1% of cells in high-glucose group were almost twice positive of those in control group (13·2%, P = 0·008). The mechanism of the ill effects of high glucose on epidermal keratinocytes is not so far clear, but it indicates the possibility of any direct effect of hyperglycaemia on glucose metabolism without changing lipid metabolism on cell membrane. The high-glucose group presented in this report can be available as an in vitro valuable study model of skin epidermal condition on diabetes mellitus.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72307/1/j.1742-4801.2005.00148.x.pd

    Batteries: Imaging degradation

    Full text link
    corecore