548 research outputs found

    Classroom Instruction Within a Residence Hall: A Comparative Study at Eastern Illinois University

    Get PDF
    This study examined the attitudes, attendance habits, and overall grades of students in an experimental section of Speech Communication taught within a residence hall. The results of this study were found to be significant by comparing them to three sections of the same Speech Communication course taught in standard classrooms. This study provides support for the continuation of the experimental program in the fall of 1988. Implications in terms of revision and expansion are discussed

    Classroom Instruction Within a Residence Hall: A Comparative Study at Eastern Illinois University

    Get PDF
    This study examined the attitudes, attendance habits, and overall grades of students in an experimental section of Speech Communication taught within a residence hall. The results of this study were found to be significant by comparing them to three sections of the same Speech Communication course taught in standard classrooms. This study provides support for the continuation of the experimental program in the fall of 1988. Implications in terms of revision and expansion are discussed

    Surface Slip During Large Owens Valley Fault Earthquakes

    Get PDF
    The 1872 Owens Valley earthquake is the third largest known historical earthquake in California. Relatively sparse field data and a complex rupture trace, however, inhibited attempts to fully resolve the slip distribution and reconcile the total moment release. We present a new, comprehensive record of surface slip based on lidar and field investigation, documenting 162 new measurements of laterally and vertically displaced landforms for 1872 and prehistoric Owens Valley earthquakes. Our lidar analysis uses a newly developed analytical tool to measure fault slip based on cross‐correlation of sublinear topographic features and to produce a uniquely shaped probability density function (PDF) for each measurement. Stacking PDFs along strike to form cumulative offset probability distribution plots (COPDs) highlights common values corresponding to single and multiple‐event displacements. Lateral offsets for 1872 vary systematically from ∼1.0 to 6.0 m and average 3.3 ± 1.1 m (2σ). Vertical offsets are predominantly east‐down between ∼0.1 and 2.4 m, with a mean of 0.8 ± 0.5 m. The average lateral‐to‐vertical ratio compiled at specific sites is ∼6:1. Summing displacements across subparallel, overlapping rupture traces implies a maximum of 7–11 m and net average of 4.4 ± 1.5 m, corresponding to a geologic Mw ∼7.5 for the 1872 event. We attribute progressively higher‐offset lateral COPD peaks at 7.1 ± 2.0 m, 12.8 ± 1.5 m, and 16.6 ± 1.4 m to three earlier large surface ruptures. Evaluating cumulative displacements in context with previously dated landforms in Owens Valley suggests relatively modest rates of fault slip, averaging between ∼0.6 and 1.6 mm/yr (1σ) over the late Quaternary

    An Artificially Lattice Mismatched Graphene/Metal Interface: Graphene/Ni/Ir(111)

    Get PDF
    We report the structural and electronic properties of an artificial graphene/Ni(111) system obtained by the intercalation of a monoatomic layer of Ni in graphene/Ir(111). Upon intercalation, Ni grows epitaxially on Ir(111), resulting in a lattice mismatched graphene/Ni system. By performing Scanning Tunneling Microscopy (STM) measurements and Density Functional Theory (DFT) calculations, we show that the intercalated Ni layer leads to a pronounced buckling of the graphene film. At the same time an enhanced interaction is measured by Angle-Resolved Photo-Emission Spectroscopy (ARPES), showing a clear transition from a nearly-undisturbed to a strongly-hybridized graphene π\pi-band. A comparison of the intercalation-like graphene system with flat graphene on bulk Ni(111), and mildly corrugated graphene on Ir(111), allows to disentangle the two key properties which lead to the observed increased interaction, namely lattice matching and electronic interaction. Although the latter determines the strength of the hybridization, we find an important influence of the local carbon configuration resulting from the lattice mismatch.Comment: 9 pages, 3 figures, Accepted for publication in Phys. Rev.

    Evidence for electronically-driven ferroelectricity in the family of strongly correlated dimerized BEDT-TTF molecular conductors

    Full text link
    By applying measurements of the dielectric constants and relative length changes to the dimerized molecular conductor κ\kappa-(BEDT-TTF)2_2Hg(SCN)2_2Cl, we provide evidence for order-disorder type electronic ferroelectricity which is driven by charge order within the (BEDT-TTF)2_2 dimers and stabilized by a coupling to the anions. According to our density functional theory calculations, this material is characterized by a moderate strength of dimerization. This system thus bridges the gap between strongly dimerized materials, often approximated as dimer-Mott systems at 1/2 filling, and non- or weakly dimerized systems at 1/4 filling exhibiting charge order. Our results indicate that intra-dimer charge degrees of freedom are of particular importance in correlated κ\kappa-(BEDT-TTF)2_2X salts and can create novel states, such as electronically-driven multiferroicity or charge-order-induced quasi-1D spin liquids.Comment: 6 pages, 4 figures + Supplementary Information (8 pages, 8 figures

    Structural and Functional Insights Into the Role of BamD and BamE Within the \u3cem\u3eβ\u3c/em\u3e-Barrel Assembly Machinery in \u3cem\u3eNeisseria gonorrhoeae\u3c/em\u3e

    Get PDF
    The β-barrel assembly machinery (BAM) is a conserved multicomponent protein complex responsible for the biogenesis of β-barrel outer membrane proteins (OMPs) in Gram-negative bacteria. Given its role in the production of OMPs for survival and pathogenesis, BAM represents an attractive target for the development of therapeutic interventions, including drugs and vaccines against multidrug-resistant bacteria such as Neisseria gonorrhoeae. The first structure of BamA, the central component of BAM, was from N. gonorrhoeae, the etiological agent of the sexually transmitted disease gonorrhea. To aid in pharmaceutical targeting of BAM, we expanded our studies to BamD and BamE within BAM of this clinically relevant human pathogen. We found that the presence of BamD, but not BamE, is essential for gonococcal viability. However, BamE, but not BamD, was cell-surface–displayed under native conditions; however, in the absence of BamE, BamD indeed becomes surface-exposed. Loss of BamE altered cell envelope composition, leading to slower growth and an increase in both antibiotic susceptibility and formation of membrane vesicles containing greater amounts of vaccine antigens. Both BamD and BamE are expressed in diverse gonococcal isolates, under host-relevant conditions, and throughout different phases of growth. The solved structures of Neisseria BamD and BamE share overall folds with Escherichia coli proteins but contain differences that may be important for function. Together, these studies highlight that, although BAM is conserved across Gram-negative bacteria, structural and functional differences do exist across species, which may be leveraged in the development of species-specific therapeutics in the effort to combat multidrug resistance

    Early events of Bacillus anthracis germination identified by time-course quantitative proteomics

    Full text link
    Germination of Bacillus anthracis spores involves rehydration of the spore interior and rapid degradation of several of the protective layers, including the spore coat. Here, we examine the temporal changes that occur during B. anthracis spore germination using an isobaric tagging system. Over the course of 17 min from the onset of germination, the levels of at least 19 spore proteins significantly decrease. Included are acid-soluble proteins, several known and predicted coat proteins, and proteins of unknown function. Over half of these proteins are small (less than 100 amino acids) and would have been undetectable by conventional gel-based analysis. We also identified 20 proteins, whose levels modestly increased at the later time points when metabolism has likely resumed. Taken together, our data show that isobaric labeling of complex mixtures is particularly effective for temporal studies. Furthermore, we describe a rigorous statistical approach to define relevant changes that takes into account the nature of data obtained from multidimensional protein identification technology coupled with the use of isobaric tags. This study provides an expanded list of the proteins that may be involved in germination of the B. anthracis spore and their relative levels during germination.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/55849/1/5199_ftp.pd

    Timed inhibition of CDC7 increases CRISPR-Cas9 mediated templated repair.

    Get PDF
    Repair of double strand DNA breaks (DSBs) can result in gene disruption or gene modification via homology directed repair (HDR) from donor DNA. Altering cellular responses to DSBs may rebalance editing outcomes towards HDR and away from other repair outcomes. Here, we utilize a pooled CRISPR screen to define host cell involvement in HDR between a Cas9 DSB and a plasmid double stranded donor DNA (dsDonor). We find that the Fanconi Anemia (FA) pathway is required for dsDonor HDR and that other genes act to repress HDR. Small molecule inhibition of one of these repressors, CDC7, by XL413 and other inhibitors increases the efficiency of HDR by up to 3.5 fold in many contexts, including primary T cells. XL413 stimulates HDR during a reversible slowing of S-phase that is unexplored for Cas9-induced HDR. We anticipate that XL413 and other such rationally developed inhibitors will be useful tools for gene modification

    Targeted correction of a thalassemia-associated β-globin mutation induced by pseudo-complementary peptide nucleic acids

    Get PDF
    β-Thalassemia is a genetic disorder caused by mutations in the β-globin gene. Triplex-forming oligonucleotides and triplex-forming peptide nucleic acids (PNAs) have been shown to stimulate recombination in mammalian cells via site-specific binding and creation of altered helical structures that provoke DNA repair. However, the use of these molecules for gene targeting requires homopurine tracts to facilitate triple helix formation. Alternatively, to achieve binding to mixed-sequence target sites for the induced gene correction, we have used pseudo-complementary PNAs (pcPNAs). Due to steric hindrance, pcPNAs are unable to form pcPNA–pcPNA duplexes but can bind to complementary DNA sequences via double duplex-invasion complexes. We demonstrate here that pcPNAs, when co-transfected with donor DNA fragments, can promote single base pair modification at the start of the second intron of the beta-globin gene. This was detected by the restoration of proper splicing of transcripts produced from a green fluorescent protein-beta globin fusion gene. We also demonstrate that pcPNAs are effective in stimulating recombination in human fibroblast cells in a manner dependent on the nucleotide excision repair factor, XPA. These results suggest that pcPNAs can be effective tools to induce heritable, site-specific modification of disease-related genes in human cells without purine sequence restriction
    corecore