35 research outputs found

    An Evolutionary Trade-Off between Protein Turnover Rate and Protein Aggregation Favors a Higher Aggregation Propensity in Fast Degrading Proteins

    Get PDF
    We previously showed the existence of selective pressure against protein aggregation by the enrichment of aggregation-opposing ‘gatekeeper’ residues at strategic places along the sequence of proteins. Here we analyzed the relationship between protein lifetime and protein aggregation by combining experimentally determined turnover rates, expression data, structural data and chaperone interaction data on a set of more than 500 proteins. We find that selective pressure on protein sequences against aggregation is not homogeneous but that short-living proteins on average have a higher aggregation propensity and fewer chaperone interactions than long-living proteins. We also find that short-living proteins are more often associated to deposition diseases. These findings suggest that the efficient degradation of high-turnover proteins is sufficient to preclude aggregation, but also that factors that inhibit proteasomal activity, such as physiological ageing, will primarily affect the aggregation of short-living proteins

    Amyloid-based nanosensors and nanodevices

    Full text link

    A review on the phytochemistry, ethnobotanical uses and pharmacology of Borago species

    No full text
    Ethnopharmacological relevance: Borago L., (family Boraginaceae) is a small genus of annual or perennial herbs with branched flowers, which is commonly found in the Mediterranean region. Some species known as Gavzabȃn in Asian and some African countries are traditionally used instead of Borago. Aims of the review: The purpose of this study was to provide comprehensive scientific information on phytochemistry, traditional uses and pharmacological activities of Borago species to provide an insight into further research on the therapeutic potential of these plants. In many studies, it has been shown that different parts of Borago species, including leaves, flowers, seeds, roots and aerial parts possess numerous ethnobotanical values. Materials and methods: All ethnobotanical, phytochemical, pharmacological, and clinical data were collected from online journals, magazines and books (all of which were published in English, Arabic, and Persian) from 1968 to 2018. Electronic databases such as Google, Google Scholar, PubMed, Science Direct, Researchgate, and other online collections were used. Results: The phytochemical studies on five species showed a wide range of phytochemicals belonging to different classes of secondary metabolites. From a pharmacological point of view, different extracts and fractions, essential oils, and pure compounds isolated from various Borago species have shown diverse activities in in vitro, in vivo, and clinical studies confirming various traditional uses of Borago genus. Conclusion: Considering the reported activities of the Borago genus both in traditional and modern medicine, further studies on biological aspects and identification of the mechanism of action for drug discovery are highly required

    Proteolytic Activity in the Midgut of the Crimson Speckled Moth Utethesia Pulchella L. (Lepidoptera: Arctiidae)

    No full text
    Samples were prepared from the midgut of 4th instar larvae of the crimson speckled moth Utethesia pulchella L. to find proteolytic activity and properties. Result revealed the presence of high proteolytic activity in the midgut when taking into account specific proteinases including trypsin-like, chymotrypsin-like, elastase and two exopeptidase (aminopeptidase and carboxipeptidase). The optimal pH of general protease was 8 and 7 when using azocasein and hemoglobin as general substrates, respectively. The optimal temperature of the total proteolytic activity in the midgut of U. pulchella was 25°C and 30°C when using azocasein and hemoglobin, respectively. Proteolytic activity was inhibited significantly by soybean trypsin inhibitor (SBTI), phenylmethylsulfonyl fluoride (PMSF), trypsin inhibitor (TLCK), chymotrypsin inhibitor (TPCK) and Phenanthroline. These results provide evidences for the presence of serine proteinases as the major proteases in the midgut of U. pulchella; a key rangeland pest in warm climates. The interaction between digestive proteases and protease inhibitors have potentially important consequences for pest management programs
    corecore