12 research outputs found

    Research on Fair Trading Mechanism of Surplus Power Based on Blockchain

    No full text
    The development of blockchain technology is very rapidly. As a decentralized distributed technology, the blockchain has become one of the most promising Internet applications, and its application in the power balance trading platform has also received extensive attention. In view of the information asymmetry between the trading center and the margin trading users in the power balance trading platform, it is difficult to guarantee the fairness of the transaction and affect the actual income of the production consumers. First, we analyze the trading mechanism of the power surplus market.Then we designed a smart contract for multi-party bidding power resources based on blockchain technology, and achieved the decentralized power trading decision to ensure the information is symmetric and fair.At the same time, the credibility model is established by analyzing the user's recent transaction records, and we design a corresponding punishment mechanism to strengthen the constraint on the execution of offline point-to-point power transactions

    Research on Fair Trading Mechanism of Surplus Power Based on Blockchain

    No full text
    The development of blockchain technology is very rapidly. As a decentralized distributed technology, the blockchain has become one of the most promising Internet applications, and its application in the power balance trading platform has also received extensive attention. In view of the information asymmetry between the trading center and the margin trading users in the power balance trading platform, it is difficult to guarantee the fairness of the transaction and affect the actual income of the production consumers. First, we analyze the trading mechanism of the power surplus market.Then we designed a smart contract for multi-party bidding power resources based on blockchain technology, and achieved the decentralized power trading decision to ensure the information is symmetric and fair.At the same time, the credibility model is established by analyzing the user's recent transaction records, and we design a corresponding punishment mechanism to strengthen the constraint on the execution of offline point-to-point power transactions

    Application of Modified Biochar in the Treatment of Pesticide Wastewater by Constructed Wetland

    No full text
    To explore the synergistic effects of modified biochar in the purification of herbicide-containing wastewater, the effect of biochar addition on the removal effect of the herbicide atrazine in wastewater was verified by the addition of biochar bags in a small reed bed-constructed wetland in the laboratory. The results showed that the addition of sulfuric acid-modified biochar could increase the removal rate of atrazine in wastewater from 50% to 70%, and the COD elimination rate in wastewater was from 66.7% to 86.7%. The addition of biochar to the constructed reed bed wetland improved the removal efficiency of total nitrogen and total phosphorus in the wastewater, and the outlet water from the constructed wetland reached the Class III level of China’s surface water quality standard (the inlet water was inferior to Class V). The experimental design met the requirements of low-cost, generalized atrazine-containing wastewater treatment and thus could have the potential for wide application. The results reflected the application potential of modified biochar as a synergist in the treatment of herbicide wastewater in constructed wetlands

    Ecological risk assessment of glyphosate and its possible effect on bacterial community in surface sediments of a typical shallow Lake, northern China

    No full text
    Glyphosate is a widely used herbicide worldwide and its prevalent presence in aquatic ecosystems poses a threat to living organisms. This study evaluated potential ecological risk of glyphosate to sediment-dwelling organisms and assessed the probable effect of glyphosate on structure and predicated function of sediment-attached bacterial communities from a large shallow lake in northern China based on 16S rRNA high-throughput sequencing. Results suggested that glyphosate showed a medium to high concentration (up to 8.63 mg/kg) and chronic risk to sediment-dwelling organisms (10% samples exhibiting medium to high risk quotient), especially in sites nearby farmland and residential areas in August. Bacterial community identification based on 16S rRNA sequence indicated some species of dominant phylum Proteobacteria and Campilobacterota (e.g., Steroidobacteraceae, Thiobacillus, Gallionellaceae, Sulfurimonadaceae) were stimulated while some species of dominant phylum Actinobacteriota, Acidobacteriota and Firmicutes (e.g., Nocardioidaceae, Microtrichales, Vicinamibacteraceae, Paenisporosarcina) were inhibited by glyphosate accumulation. The stimulating species were related to sulfur-oxidizing, sulfate-, iron-, or nitrate-reducing bacteria; The inhibiting species were related to plant bacterial endophytes, polyphosphate-accumulating organisms (PAOs) and denitrifers. Correspondingly, promoted bacterial metabolic functions of “sulfite respiration”, “nitrogen respiration”, “aromatic compound degradation” and “nitrification” but suppressed “cellulolysis”, “manganese oxidation”, “anoxygenic photoautotrophy S oxidizing” and “nitrate denitrification” were predicated on functional annotation of prokaryotic taxa. Although these results could only partly suggest the impacts of glyphosate on the bacterial communities due to the lack of actual results from control experiments, the identified Steroidobacteraceae could be thought as a bioindicator in the future mechanism study for the ecological effect and bioremediation of glyphosate. This work intends to arise the concern about the depletion of biodiversity and bacterial metabolic functions with contribution of glyphosate in part in eutrophic lakes

    Application of Modified Biochar in the Treatment of Pesticide Wastewater by Constructed Wetland

    No full text
    To explore the synergistic effects of modified biochar in the purification of herbicide-containing wastewater, the effect of biochar addition on the removal effect of the herbicide atrazine in wastewater was verified by the addition of biochar bags in a small reed bed-constructed wetland in the laboratory. The results showed that the addition of sulfuric acid-modified biochar could increase the removal rate of atrazine in wastewater from 50% to 70%, and the COD elimination rate in wastewater was from 66.7% to 86.7%. The addition of biochar to the constructed reed bed wetland improved the removal efficiency of total nitrogen and total phosphorus in the wastewater, and the outlet water from the constructed wetland reached the Class III level of China’s surface water quality standard (the inlet water was inferior to Class V). The experimental design met the requirements of low-cost, generalized atrazine-containing wastewater treatment and thus could have the potential for wide application. The results reflected the application potential of modified biochar as a synergist in the treatment of herbicide wastewater in constructed wetlands

    Data_Sheet_1_Circulating immune complexes and mutations of HBsAg are associated with the undetectable HBsAg in anti-HBs and HBeAg positive occult hepatitis B virus infection.docx

    No full text
    IntroductionOccult hepatitis B virus infection (OBI) is an HBsAg negative state in HBV infection with usually inactive HBV replication. However, there were a minority of individuals with positive HBeAg and anti-HBs among OBI blood donors and few studies have focused on this unusual serological pattern.Methods2022 plasma of blood donors that preliminary screened reactive for HBV DNA and non-reactive for HBsAg were collected from 16 provinces in China from 2015 to 2018. HBV DNA and HBsAg in these samples were retested using the Cobas TaqScreen MPX test and ARCHITECT HBsAg Quantitative II assay. Lumipulse HBsAg-HQ assay and polyethylene glycol (PEG)-double precipitation following HCl and trypsin digestion were performed to detect HBsAg from HBsAg-anti-HBs circulating immune complexes (CICs).Results1487 of 2022 samples were positive for Cobas HBV DNA test and non-reactive for ARCHITECT HBsAg assay, while 404 of them were positive using Lumipulse HBsAg-HQ assay. 10 HBsAg-/anti-HBs+/HBeAg+ OBI blood donor samples were further dissociated and HBsAg-CICs were detected in 7 samples. Sequencing analysis showed that D44N, N98T, G73S, Del 56-116, and I161T occurred in the pre-S region, and immune escape mutations such as P127T, F134L, G145R, V168A, and I126T/S in the S region were found.DiscussionIn conclusion, there were a minority of HBsAg-/anti-HBs+/HBeAg+ individuals in OBI blood donors. The undetectable HBsAg in these individuals was mainly due to HBsAg-CICs. Immune escape-associated mutations also happened under the host’s selective pressure. HBsAg dissociation methods or Lumipulse HBsAg-HQ assay is recommended to distinguish these individuals.</p

    Placental trophoblast-specific overexpression of chemerin induces preeclampsia-like symptoms

    Get PDF
    Maternal circulating levels of the adipokine chemerin are elevated in preeclampsia, but its origin and contribution to preeclampsia remain unknown. We therefore studied (1) placental chemerin expression and release in human pregnancy, and (2) the consequences of chemerin overexpression via lentivirus-mediated trophoblast-specific gene manipulation in both mice and immortalized human trophoblasts. Placental chemerin expression and release were increased in women with preeclampsia, and their circulating chemerin levels correlated positively with the soluble Fms-like tyrosine kinase-1 (sFlt-1)/placental growth factor (PlGF) ratio, a well-known biomarker of preeclampsia severity. Placental trophoblast chemerin overexpression in mice induced a preeclampsia-like syndrome, involving hypertension, proteinuria, and endotheliosis, combined with diminished trophoblast invasion, a disorganized labyrinth layer, and up-regulation of sFlt-1 and the inflammation markers nuclear factor-κB (NFκB), tumor necrosis factor (TNF)-α, and interleukin (IL)-1β. It also led to embryo resorption, while maternal serum chemerin levels correlated negatively with fetal weight in mice. Chemerin overexpression in human trophoblasts up-regulated sFlt-1, reduced vascular endothelial factor-A, and inhibited migration and invasion, as well as tube formation during co-culture with human umbilical vein endothelial cells (HUVECs). The chemokine-like receptor 1 (CMKLR1) antagonist α-NETA prevented the latter phenomenon, although it did not reverse the chemerin-induced down-regulation of the phosphoinositide 3-kinase/Akt pathway. In conclusion, up-regulation of placental chemerin synthesis disturbs normal placental development via its CMKLR1 receptor, thereby contributing to fetal growth restriction/resorption and the development of preeclampsia. Chemerin might be a novel biomarker of preeclampsia, and inhibition of the chemerin/CMKLR1 pathway is a promising novel therapeutic strategy to treat preeclampsia

    Integration of Computational and Experimental Techniques for the Discovery of SARS-CoV-2 PLpro Covalent Inhibitors

    No full text
    Papain-like protease (PLpro) and 3-chymotrypsin-like protease (3CLpro or Mpro) are enzymes essential for the replication of SARS-CoV-2, the virus responsible for COVID-19. While 3CLpro has been the main target of many potential antivirals including nirmatrelvir (active ingredient of Paxlovid), PLpro has proven to be more difficult to target and only a handful of inhibitors have been disclosed. PLpro inhibitors would be highly valuable tools in the fight against COVID19 resistant strains and in future coronavirus pandemics. Combining our experience with 3CLpro covalent inhibitors with our expertise in structure-based covalent drug discovery, we rationally designed PLpro inhibitors achieving a maximum potency of 13 µM through fusion of GRL-0617 and VIR-251. In parallel, we launched an integrated large scale virtual screening/experimental approach, identifying four novel chemical series active at micromolar concentrations against PLpro. We report herein our investigations including rational design, virtual screening, synthesis of selected structures and in vitro assays leading to novel PLpro inhibitors
    corecore