537 research outputs found

    Analytical E1 strength functions of two-neutron halo nuclei: the 6-He example

    Get PDF
    An analytical model is developed to study the spectra of electromagnetic dissociation of two-neutron halo nuclei without precise knowledge about initial and final states. Phenomenological three-cluster bound state wave functions, reproducing the most relevant features of these nuclei, are used along with no interaction final states. The 6-He nucleus is considered as a test case, and a good agreement with experimental data concerning the shape of the spectrum and the magnitude of the strength function is found.Comment: 19 pages, 4 figures Accepted for publishing in Nuclear Physics

    Three-Body Halos. II. from Two- to Three-Body Asymptotics

    Full text link
    The large distance behavior of weakly bound three-body systems is investigated. The Schr\"{o}dinger equation and the Faddeev equations are reformulated by an expansion in eigenfunctions of the angular part of a corresponding operator. The resulting coupled set of effective radial equations are then derived. Both two- and three-body asymptotic behavior are possible and their relative importance is studied for systems where subsystems may be bound. The system of two nucleons outside a core is studied numerically in detail and the character of possible halo structure is pointed out and investigated.Comment: 16 pages, compressed and uuencoded PosrScript file, IFA-94/3

    Analytical approach to electromagnetic processes in loosely bound nuclei: application to 8B

    Get PDF
    In this paper we develop an analytical model in order to study electromagnetic processes involving loosely bound neutron--rich and proton--rich nuclei. We construct a model wave function, to describe loosely bound few--body systems, having the correct behaviour both at large and small distances. The continuum states are approximated by regular Coulomb functions. As a test case we consider the two--body Coulomb dissociation of 8B and, the inverse, radiative capture reaction. The difference between using a pure two--body model and the results obtained when incorporating many--body effects, is investigated. We conclude that the interpretation of experimental data is highly model dependent and stress the importance of measuring few--body channels.Comment: Accepted for publication in Physics Letters B. Added a comparison with a potential model calculation in Fig.

    Breakup Reactions of 11Li within a Three-Body Model

    Get PDF
    We use a three-body model to investigate breakup reactions of 11Li (n+n+9Li) on a light target. The interaction parameters are constrained by known properties of the two-body subsystems, the 11Li binding energy and fragmentation data. The remaining degrees of freedom are discussed. The projectile-target interactions are described by phenomenological optical potentials. The model predicts dependence on beam energy and target, differences between longitudinal and transverse momentum distributions and provides absolute values for all computed differential cross sections. We give an almost complete series of observables and compare with corresponding measurements. Remarkably good agreement is obtained. The relative neutron-9Li p-wave content is about 40%. A p-resonance, consistent with measurements at about 0.5 MeV of width about 0.4 MeV, seems to be necessary. The widths of the momentum distributions are insensitive to target and beam energy with a tendency to increase towards lower energies. The transverse momentum distributions are broader than the longitudinal due to the diffraction process. The absolute values of the cross sections follow the neutron-target cross sections and increase strongly for beam energies decreasing below 100 MeV/u.Comment: 19 pages, 14 figures, RevTeX, psfig.st

    Momentum Distributions of Particles from Three--Body Halo Fragmentation: Final State Interactions

    Get PDF
    Momentum distributions of particles from nuclear break-up of fast three-body halos are calculated consistently, and applied to 11^{11}Li. The same two-body interactions between the three particles are used to calculate the ground state structure and the final state of the reaction processes. We reproduce the available momentum distributions from 11^{11}Li fragmentation, together with the size and energy of 11^{11}Li, with a neutron-core relative state containing a pp-state admixture of 20\%-30\%. The available fragmentation data strongly suggest an ss-state in 10^{10}Li at about 50 keV, and indicate a pp-state around 500 keV.Comment: 11 pages (RevTeX), 3 Postscript figures (uuencoded postscript file attached at the end of the LaTeX file). To be published in Phys. Rev.

    Solving the inverse problem for determining the optical characteristics of materials

    Get PDF
    The paper describes a methodology for determining the optical and physical properties of anisotropic thin film materials. This approach allows in the future designing multilayer thin-film coatings with specified properties. An inverse problem of determining the permittivity tensor and the thickness of a thin film deposited on a glass substrate is formulated. Preliminary information on the belonging of a thin-film coating to a certain class can significantly reduce the computing time and increase the accuracy of determining the permittivity tensor over the entire investigated range of wavelengths and film thickness at the point of reflection and transmission measurement Depending on the goals, it is possible to formulate and, therefore, solve various inverse problems: o determination of the permittivity tensor and specification of the thickness of a thick (up to 1 cm) substrate, often isotropic; o determination of the permittivity tensor of a thin isotropic or anisotropic film deposited on a substrate with known optical properties. The complexity of solving each of the problems is very different and each problem requires its own specific set of measured input data. The ultimate results of solving the inverse problem are verified by comparing the calculated transmission and reflection with those measured for arbitrary angles of incidence and reflection.В работе изложена методология определения оптических и физических свойств анизотропных тонкоплёночных материалов. Такой подход позволяет в дальнейшем проектировать многослойные тонкоплёночные покрытия с заданными свойствами. Сформулирована обратная задача определения тензора диэлектрической проницаемости и толщины тонкой плёнки, нанесённой на стеклянную подложку, с известными оптическими свойствами и толщиной. Предварительная информация о принадлежности тонкоплёночного покрытия к определённому классу позволяет значительно сократить время расчёта и увеличить точность определения тензора диэлектрической проницаемости на всём исследуемом интервале длин волн и толщины плёнки в точке измерения отражения и пропускания. В зависимости от поставленных целей возможна постановка и, следовательно, решение различных обратных задач: o определение тензора диэлектрической проницаемости и уточнение толщины толстой (до 1 см) подложки, часто изотропной; o определение тензора диэлектрической проницаемости тонкой изотропной или анизотропной плёнки, нанесённой на подложку, с известными оптическими свойствами. Сложность решения каждой из задач весьма различна и каждая требует своего определённого набора измеренных входных данных. Окончательные результаты решения обратной задачи верифицируются с помощью сравнения вычисленных коэффициентов пропускания и отражения с измеренными для произвольных углов падения и отражения

    Synthesis and Nanoscale Characterization of LiNbO3 Thin Films Deposited on Al2O3 Substrate by RF Magnetron Sputtering under Electric Field

    Get PDF
    LiNbO3 thin films were deposited on Al2O3 substrates by RF-magnetron sputtering with in-situ electric field to study the self-polarization effect. The films have been characterized crystallographically by x-ray diffraction, and morphologically by atomic force microscopy. The films contain crystallites of LiNbO3 with preferable orientation [012] along the normal to the Al2O3 substrate surface (012). Piezoresponse force microscopy was used to study vertical and lateral polarization direction in LiNbO3 thin films. The analysis of the histograms of vertical piezoresponse images allowed to reveal self-polarization effect in films. The local piezoelectric hysteresis performed on the nanometer scale indicates switching behavior of polarization for LiNbO3 thin film

    The six-nucleon Yakubovsky equations for 6He

    Full text link
    The six-nucleon problem for the bound state is formulated in the Yakubovsky scheme. Hints for a numerical implementation are provided.Comment: 25 pages, 0 figure

    Shell model in the complex energy plane and two-particle resonances

    Get PDF
    An implementation of the shell-model to the complex energy plane is presented. The representation used in the method consists of bound single-particle states, Gamow resonances and scattering waves on the complex energy plane. Two-particle resonances are evaluated and their structure in terms of the single-particle degreees of freedom are analysed. It is found that two-particle resonances are mainly built upon bound states and Gamow resonances, but the contribution of the scattering states is also important.Comment: 20 pages, 9 figures, submitted to Phys.Rev.
    corecore