2,676 research outputs found

    Cell‐type specific visualization and biochemical isolation of endogenous synaptic proteins in mice

    Get PDF
    In recent years, the remarkable molecular complexity of synapses has been revealed, with over 1000 proteins identified in the synapse proteome. Although it is known that different receptors and other synaptic proteins are present in different types of neurons, the extent of synapse diversity across the brain is largely unknown. This is mainly due to the limitations of current techniques. Here we report an efficient method for the purification of synaptic protein‐complexes, fusing a high‐affinity tag to endogenous PSD95 in specific cell types. We also developed a strategy which enables the visualization of endogenous PSD95 with fluorescent‐proteins tag in Cre‐recombinase expressing cells. We demonstrate the feasibility of proteomic analysis of synaptic protein‐complexes and visualization of these in specific cell types. We find that the composition of PSD95‐complexes purified from specific cell types differs from those extracted from tissues with diverse cellular composition. The results suggest that there might be differential interactions in the PSD95‐complexes in different brain regions. We have detected differentially interacting proteins by comparing datasets from the whole hippocampus and the CA3 subfield of the hippocampus. Therefore, these novel conditional PSD95 tagging lines will not only serve as powerful tools for precisely dissecting synapse diversity in specific brain regions and subsets of neuronal cells, but also provide an opportunity to better understand brain region‐ and cell type‐specific alterations associated with various psychiatric/neurological diseases. These newly developed conditional gene‐tagging methods can be applied to many different synaptic proteins and will facilitate research on the molecular complexity of synapses

    Constraining the dark energy with galaxy clusters X-ray data

    Full text link
    The equation of state characterizing the dark energy component is constrained by combining Chandra observations of the X-ray luminosity of galaxy clusters with independent measurements of the baryonic matter density and the latest measurements of the Hubble parameter as given by the HST key project. By assuming a spatially flat scenario driven by a "quintessence" component with an equation of state px=ωρxp_x = \omega \rho_x we place the following limits on the cosmological parameters ω\omega and Ωm\Omega_{\rm{m}}: (i) −1≀ω≀−0.55-1 \leq \omega \leq -0.55 and Ωm=0.32−0.014+0.027\Omega_{\rm m} = 0.32^{+0.027}_{-0.014} (1σ\sigma) if the equation of state of the dark energy is restricted to the interval −1≀ω<0-1 \leq \omega < 0 (\emph{usual} quintessence) and (ii) ω=−1.29−0.792+0.686\omega = -1.29^{+0.686}_{-0.792} and Ωm=0.31−0.034+0.037\Omega_{\rm{m}} = 0.31^{+0.037}_{-0.034} (1σ1\sigma) if ω\omega violates the null energy condition and assume values <−1< -1 (\emph{extended} quintessence or ``phantom'' energy). These results are in good agreement with independent studies based on supernovae observations, large-scale structure and the anisotropies of the cosmic background radiation.Comment: 6 pages, 4 figures, LaTe

    Time-Dependent Spintronic Transport and Current-Induced Spin Transfer Torque in Magnetic Tunnel Junctions

    Full text link
    The responses of the electrical current and the current-induced spin transfer torque (CISTT) to an ac bias in addition to a dc bias in a magnetic tunnel junction are investigated by means of the time-dependent nonquilibrium Green function technique. The time-averaged current (time-averaged CISTT) is formulated in the form of a summation of dc current (dc CISTT) multiplied by products of Bessel functions with the energy levels shifted by mℏω0m\hbar \omega _{0}. The tunneling current can be viewed as to happen between the photonic sidebands of the two ferromagnets. The electrons can pass through the barrier easily under high frequencies but difficultly under low frequencies. The tunnel magnetoresistance almost does not vary with an ac field. It is found that the spin transfer torque, still being proportional to the electrical current under an ac bias, can be changed by varying frequency. Low frequencies could yield a rapid decrease of the spin transfer torque, while a large ac signal leads to both decrease of the electrical current and the spin torque. If only an ac bias is present, the spin transfer torque is sharply enhanced at the particular amplitude and frequency of the ac bias. A nearly linear relation between such an amplitude and frequency is observed.Comment: 13 pages,8 figure

    Anomalous Dynamic Scaling in Locally-Conserved Coarsening of Fractal Clusters

    Full text link
    We report two-dimensional phase-field simulations of locally-conserved coarsening dynamics of random fractal clusters with fractal dimension D=1.7 and 1.5. The correlation function, cluster perimeter and solute mass are measured as functions of time. Analyzing the correlation function dynamics, we identify two different time-dependent length scales that exhibit power laws in time. The exponents of these power laws are independent of D, one of them is apparently the classic exponent 1/3. The solute mass versus time exhibits dynamic scaling with a D-dependent exponent, in agreement with a simple scaling theory.Comment: 5 pages, 4 figure

    Computational identification of anthocyanin-specific transcription factors using a rice microarray and maximum boundary range algorithm

    Get PDF
    This study identifies 2,617 candidate genes related to anthocyanin biosynthesis in rice using microarray analysis and a newly developed maximum boundary range algorithm. Three seed developmental stages were examined in white cultivar and two black Dissociation insertion mutants. The resultant 235 transcription factor genes found to be associated with anthocyanin were classified into nine groups. It is compared the 235 genes by transcription factor analysis and 593 genes from among clusters of COGs related to anthocyanin functions. Total 32 genes were found to be expressed commonly. Among these, 9 unknown and hypothetical genes were revealed to be expressed at each developmental stage and were verified by RT-PCR. These genes most likely play regulatory roles in either anthocyanin production or metabolism during flavonoid biosynthesis. While these genes require further validation, our results underline the potential usefulness of the newly developed algorithm

    Current lookback time-redshift bounds on dark energy

    Get PDF
    We investigate observational constraints on dark energy models from lookback time (LT) estimates of 32 old passive galaxies distributed over the redshift interval 0.11≀z≀1.840.11 \leq z \leq 1.84. To build up our LT sample we combine the age measurements for these 32 objects with estimates of the total age of the Universe, as obtained from current CMB data. We show that LT data may provide bounds on the cosmological parameters with accuracy competitive with type Ia Supernova methods. In order to break possible degeneracies between models parameters, we also discuss the bounds when our lookback time versus redshift sample is combined with with the recent measurement of the baryonic acoustic oscillation peak and the derived age of the Universe from current CMB measurements.Comment: 6 pages, 4 figures, LaTe

    The Deformable Universe

    Full text link
    The concept of smooth deformations of a Riemannian manifolds, recently evidenced by the solution of the Poincar\'e conjecture, is applied to Einstein's gravitational theory and in particular to the standard FLRW cosmology. We present a brief review of the deformation of Riemannian geometry, showing how such deformations can be derived from the Einstein-Hilbert dynamical principle. We show that such deformations of space-times of general relativity produce observable effects that can be measured by four-dimensional observers. In the case of the FLRW cosmology, one such observable effect is shown to be consistent with the accelerated expansion of the universe.Comment: 20 pages, LaTeX, 3 figure

    A Novel Sparse Graphical Approach for Multimodal Brain Connectivity Inference

    Get PDF
    International audienceDespite the clear potential benefits of combining fMRI and diffusion MRI in learning the neural pathways that underlie brain functions, little methodological progress has been made in this direction. In this paper, we propose a novel multimodal integration approach based on sparse Gaussian graphical model for estimating brain connectivity. Casting functional connectivity estimation as a sparse inverse covariance learning problem, we adapt the level of sparse penalization on each connection based on its anatomical capacity for functional interactions. Functional connections with little anatomical support are thus more heavily penalized. For validation, we showed on real data collected from a cohort of 60 subjects that additionally modeling anatomical capacity significantly increases subject consistency in the detected connection patterns. Moreover, we demonstrated that incorporating a connectivity prior learned with our multimodal connectivity estimation approach improves activation detection

    Phonon anomalies and electron-phonon interaction in RuSr_2GdCu_2O_8 ferromagnetic superconductor: Evidence from infrared conductivity

    Full text link
    Critical behavior of the infrared reflectivity of RuSr_2GdCu_2O_8 ceramics is observed near the superconducting T_{SC} = 45 K and magnetic T_M = 133 K transition temperatures. The optical conductivity reveals the typical features of the c-axis optical conductivity of strongly underdoped multilayer superconducting cuprates. The transformation of the Cu-O bending mode at 288 cm^{-1} to a broad absorption peak at the temperatures between T^* = 90 K and T_{SC} is clearly observed, and is accompanied by the suppression of spectral weight at low frequencies. The correlated shifts to lower frequencies of the Ru-related phonon mode at 190 cm^{-1} and the mid-IR band at 4800 cm^{-1} on decreasing temperature below T_M are observed. It provides experimental evidence in favor of strong electron-phonon coupling of the charge carriers in the Ru-O layers which critically depends on the Ru core spin alignment. The underdoped character of the superconductor is explained by strong hole depletion of the CuO_2 planes caused by the charge carrier self-trapping at the Ru moments.Comment: 11 pages incl. 5 figures, submitted to PR

    Andreev Reflection in Ferromagnet/Superconductor/Ferromagnet Double Junction Systems

    Full text link
    We present a theory of Andreev reflection in a ferromagnet/superconductor/ferromagnet double junction system. The spin polarized quasiparticles penetrate to the superconductor in the range of penetration depth from the interface by the Andreev reflection. When the thickness of the superconductor is comparable to or smaller than the penetration depth, the spin polarized quasiparticles pass through the superconductor and therefore the electric current depends on the relative orientation of magnetizations of the ferromagnets. The dependences of the magnetoresistance on the thickness of the superconductor, temperature, the exchange field of the ferromagnets and the height of the interfacial barriers are analyzed. Our theory explains recent experimental results well.Comment: 8 pages, 9 figures, submitted to Phys. Rev.
    • 

    corecore