29 research outputs found

    Generation of ring-shaped optical vortices in dissipative media by inhomogeneous effective diffusion

    Get PDF
    By means of systematic simulations we demonstrate generation of a variety of ring-shaped optical vortices (OVs) from a two-dimensional input with embedded vorticity, in a dissipative medium modeled by the cubic-quintic complex Ginzburg-Landau equation with an inhomogeneous effective diffusion (spatial-filtering) term, which is anisotropic in the transverse plane and periodically modulated in the longitudinal direction. We show the generation of stable square- and gear-shaped OVs, as well as tilted oval-shaped vortex rings, and string-shaped bound states built of a central fundamental soliton and two vortex satellites, or of three fundamental solitons. Their shape can be adjusted by tuning the strength and modulation period of the inhomogeneous diffusion. Stability domains of the generated OVs are identified by varying the vorticity of the input and parameters of the inhomogeneous diffusion. The results suggest a method to generate new types of ring-shaped OVs with applications to the work with structured light.Comment: 24 pages, 5 figures; Nonlinear Dynamics, in pres

    Comparative proteomics study on liver mitochondria of primary biliary cirrhosis mouse model

    Get PDF
    BACKGROUND: Primary biliary cirrhosis (PBC) is a liver specific chronic disease with unclear pathogenesis, especially for the early stage molecular events. The mitochondrion is a multi-functional organelle associated with various diseases including PBC. The purpose of this study was to discover the alterations in the mitochondria proteome using an early stage PBC mouse model for revealing the possible pathogenesis mechanisms in the early stages of PBC. METHODS: Mouse model of early stage of PBC was constructed by consecutive administration of poly I:C. Mitochondria of mouse models and controls were purified and comparative proteomics was performed by iTRAQ technology. Then, differentially expressed proteins were validated by western blotting. RESULTS: In total 354 proteins that satisfied the criteria for comparative proteomics study were identified. Of them, nine proteins were downregulated and 20 were up-regulated in liver mitochondria of PBC mouse model. Most differentially expressed proteins are associated with oxidation-reduction and lipid metabolism, and some are involved in the biosynthesis of steroid hormone and primary bile acid. Interestingly, four proteins (HCDH, CPT I, DECR, ECHDC2) involved in the fatty acid beta-oxidation were all upregulated. CONCLUSIONS: iTRAQ is a powerful tool for comparative proteomics study of PBC mouse model and differentially expressed proteins in mitochondria proteome of PBC mouse model provide insights for the pathogenesis mechanism at early stage of PBC

    Transposable element-initiated enhancer-like elements generate the subgenome-biased spike specificity of polyploid wheat

    Get PDF
    Transposable elements (TEs) comprise ~85% of the common wheat genome, which are highly diverse among subgenomes, possibly contribute to polyploid plasticity, but the causality is only assumed. Here, by integrating data from gene expression cap analysis and epigenome profiling via hidden Markov model in common wheat, we detect a large proportion of enhancer-like elements (ELEs) derived from TEs producing nascent noncoding transcripts, namely ELE-RNAs, which are well indicative of the regulatory activity of ELEs. Quantifying ELE-RNA transcriptome across typical developmental stages reveals that TE-initiated ELE-RNAs are mainly from RLG_famc7.3 specifically expanded in subgenome A. Acquisition of spike-specific transcription factor binding likely confers spike-specific expression of RLG_famc7.3-initiated ELE-RNAs. Knockdown of RLG_famc7.3-initiated ELE-RNAs resulted in global downregulation of spike-specific genes and abnormal spike development. These findings link TE expansion to regulatory specificity and polyploid developmental plasticity, highlighting the functional impact of TE-driven regulatory innovation on polyploid evolution

    Oncotarget, Advance Publications 2014 Mutations in IDH1, IDH2, and in the TERT promoter define clinically distinct subgroups of adult malignant gliomas

    Get PDF
    ABSTRACT: Frequent mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) and the promoter of telomerase reverse transcriptase (TERT) represent two significant discoveries in glioma genomics. Understanding the degree to which these two mutations co-occur or occur exclusively of one another in glioma subtypes presents a unique opportunity to guide glioma classification and prognosis. We analyzed the relationship between overall survival (OS) and the presence of IDH1/2 and TERT promoter mutations in a panel of 473 adult gliomas. We hypothesized and show that genetic signatures capable of distinguishing among several types of gliomas could be established providing clinically relevant information that can serve as an adjunct to histopathological diagnosis. We found that mutations in the TERT promoter occurred in 74.2% of glioblastomas (GBM), but occurred in a minority of Grade II-III astrocytomas (18.2%). In contrast, IDH1/2 mutations were observed in 78.4% of Grade II-III astrocytomas, but were uncommon in primary GBM. In oligodendrogliomas, TERT promoter and IDH1/2 mutations co-occurred in 79% of cases. Patients whose Grade III-IV gliomas exhibit TERT promoter mutations alone predominately have primary GBMs associated with poor median OS (11.5 months). Patients whose Grade III-IV gliomas exhibit IDH1/2 mutations alone predominately have astrocytic morphologies and exhibit a median OS of 57 months while patients whose tumors exhibit both TERT promoter and IDH1/2 mutations predominately exhibit oligodendroglial morphologies and exhibit median OS of 125 months. Analyzing gliomas based on their genetic signatures allows for the stratification of these patients into distinct cohorts, with unique prognosis and survival

    Abstracts of presentations on plant protection issues at the xth international congress of virology: August 11-16, 1996 Binyanei haOoma, Jerusalem Iarael part 3(final part)

    Get PDF

    Correction

    Get PDF

    Interview-based Study about the Impact of the COVID-19 Pandemic on Smartphone Use among the Seniors in China’s Firsttier Cities

    No full text
    The outbreak of the COVID-19 pandemic was a sudden disaster for all human beings. To prevent the spread of the pandemic, China used smart facilities to manage it, especially relying on smartphones. This study examines what the impact of the pandemic is on the use of smartphones by seniors, a group that is weaker in the use of smart devices. The study looks at the situation with seniors in the new media environment, seeking to help them cross the digital divide and bring social attention to their plight during the pandemic. The authors conducted in-depth interviews with 52 seniors from first-tier cities in China and then did a discourse analysis of the interviews. The study found that the pandemic increased the smartphone penetration among the seniors, and helped them mitigate the digital divide and increase their social adaptability. However, it is still noteworthy for smartphone addiction

    Comprehensive Optimization of Dual Threshold Independent-Gate FinFET and SRAM Cells

    No full text
    Independent-Gate (IG) FinFET is a promising device in circuit applications due to its two separated gates, which can be used independently. In this paper, we proposed a comprehensive method to optimize the Dual Threshold (DT) IG FinFET devices by carrying out modulations for the gate electrode work function, oxide thickness, and silicon body thickness. Titanium nitride (TiNx) is used as the tunable work function gate electrode for good performances. The thicknesses of the gate oxide and silicon body are swept by TCAD simulations to obtain the appropriate values. The verification simulation of the optimized transistors shows that the DT IG FinFETs can realize merging parallel and series transistors, respectively, and the current characteristics of the transistors are improved significantly. By extracting the BSIM-IMG model parameters, we can simulate the circuits composed of the proposed DT IG FinFET by using HSPICE with BSIM-IMG model. As practical examples, we optimized two novel 7T SRAM cells using DT IG FinFETs. HSPICE simulation results indicate that the new SRAM cells obtain higher write margin and read static noise margin with lower leakage power consumption than the other implementations

    Gender differences in fibrosis remodeling in patients with long-standing persistent atrial fibrillation

    Get PDF
    The success rate of catheter ablation in atrial fibrillation (AF) is known to be lower in females than in males. However, while the exact mechanism for this phenomenon remains to be elucidated, tissue fibrosis may play an important role in this regard. It has been shown that fibrosis promotes AF and its recurrence, thereby substantially reducing the efficacy of catheter ablation in AF patients. Thus, we hypothesized that fibrosis may contribute to gender differences in the outcomes of AF catheter ablation. Here we systematically assessed pulmonary vein sleeves obtained from 166 patients with and without long-standing persistent-AF (LSP-AF) in order to identify gender-specific mechanistic differences in fibrosis remodeling of AF patients. Histological analysis revealed that the female LSP-AF group, rather than its male counterpart, had a higher degree of fibrosis when compared to the NON-AF group. Further analysis using microarray, immunohistochemistry and Western Blot displayed that gender differences in fibrosis remodeling of LSP-AF were mainly due to the inherent differential expression of fibrosis-related genes (n=32) and proteins (n=6). Especially, those related to the TGFβ/Smad3 pathway appeared to be up-regulated in the female LSP-AF group thus promoting an aggravation of fibrosis remodeling. In summary, our data suggest that the aggravation of fibrosis remodeling in women may be an important reason for the low success rate of AF catheter ablation when compared to men. Therefore, inhibiting the TGFβ/Smad3 pathway-mediated fibrosis could represent an interesting target for future therapeutic concepts to improve the success rate of AF catheter ablation in women
    corecore