3,226 research outputs found

    Coupling of small leucine-rich proteoglycans to hypoxic survival of a progenitor cell-like subpopulation in Rhesus Macaque intervertebral disc

    Get PDF
    Degeneration of the intervertebral disc (IVD) is a major spinal disorder that associates with neck and back pain. Recent studies of clinical samples and animal models for IVD degeneration have identified cells with multi-potency in the IVD. However, IVD tissue-specific progenitor cells and their niche components are not clear, although degenerated IVD-derived cells possess invitro characteristics of mesenchymal stromal cell (MSCs). Here, we firstly identified the tissue-specific intervertebral disc progenitor cells (DPCs) from healthy Rhesus monkey and report the niche components modulated the survival of DPCs under hypoxia. DPCs possess clonogenicity, multipotency and retain differentiation potential after extended expansion invitro and invivo. In particular, the nucleus pulposus-derived DPCs are sensitive to low oxygen tension and undergo apoptosis under hypoxic conditions due to their inability to induce/stabilize hypoxia-inducible factors (HIF). The presence of small leucine-rich proteoglycans (SLRP), biglycan or decorin, can reduce the susceptibility of DPCs to hypoxia-induced apoptosis via promoting the activation/stabilization of HIF-1α and HIF-2α. As IVD is avascular, we propose SLRPs are niche components of DPCs in IVD homeostasis, providing new insights in progenitor cell biology and niche factors under a hypoxic microenvironment. © 2013 .postprin

    PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina.

    Get PDF
    Current gene therapies predominantly use small, strong, and readily available ubiquitous promoters. However, as the field matures, the availability of small, cell-specific promoters would be greatly beneficial. Here we design seven small promoters from the human paired box 6 (PAX6) gene and test them in the adult mouse retina using recombinant adeno-associated virus. We chose the retina due to previous successes in gene therapy for blindness, and the PAX6 gene since it is: well studied; known to be driven by discrete regulatory regions; expressed in therapeutically interesting retinal cell types; and mutated in the vision-loss disorder aniridia, which is in need of improved therapy. At the PAX6 locus, 31 regulatory regions were bioinformatically predicted, and nine regulatory regions were constructed into seven MiniPromoters. Driving Emerald GFP, these MiniPromoters were packaged into recombinant adeno-associated virus, and injected intravitreally into postnatal day 14 mice. Four MiniPromoters drove consistent retinal expression in the adult mouse, driving expression in combinations of cell-types that endogenously express Pax6: ganglion, amacrine, horizontal, and Müller glia. Two PAX6-MiniPromoters drive expression in three of the four cell types that express PAX6 in the adult mouse retina. Combined, they capture all four cell types, making them potential tools for research, and PAX6-gene therapy for aniridia

    Monitoring Influenza Activity in the United States: A Comparison of Traditional Surveillance Systems with Google Flu Trends

    Get PDF
    Google Flu Trends was developed to estimate US influenza-like illness (ILI) rates from internet searches; however ILI does not necessarily correlate with actual influenza virus infections.Influenza activity data from 2003-04 through 2007-08 were obtained from three US surveillance systems: Google Flu Trends, CDC Outpatient ILI Surveillance Network (CDC ILI Surveillance), and US Influenza Virologic Surveillance System (CDC Virus Surveillance). Pearson's correlation coefficients with 95% confidence intervals (95% CI) were calculated to compare surveillance data. An analysis was performed to investigate outlier observations and determine the extent to which they affected the correlations between surveillance data. Pearson's correlation coefficient describing Google Flu Trends and CDC Virus Surveillance over the study period was 0.72 (95% CI: 0.64, 0.79). The correlation between CDC ILI Surveillance and CDC Virus Surveillance over the same period was 0.85 (95% CI: 0.81, 0.89). Most of the outlier observations in both comparisons were from the 2003-04 influenza season. Exclusion of the outlier observations did not substantially improve the correlation between Google Flu Trends and CDC Virus Surveillance (0.82; 95% CI: 0.76, 0.87) or CDC ILI Surveillance and CDC Virus Surveillance (0.86; 95%CI: 0.82, 0.90).This analysis demonstrates that while Google Flu Trends is highly correlated with rates of ILI, it has a lower correlation with surveillance for laboratory-confirmed influenza. Most of the outlier observations occurred during the 2003-04 influenza season that was characterized by early and intense influenza activity, which potentially altered health care seeking behavior, physician testing practices, and internet search behavior

    T-Bet and Eomes Regulate the Balance between the Effector/Central Memory T Cells versus Memory Stem Like T Cells

    Get PDF
    Memory T cells are composed of effector, central, and memory stem cells. Previous studies have implicated that both T-bet and Eomes are involved in the generation of effector and central memory CD8 T cells. The exact role of these transcription factors in shaping the memory T cell pool is not well understood, particularly with memory stem T cells. Here, we demonstrate that both T-bet or Eomes are required for elimination of established tumors by adoptively transferred CD8 T cells. We also examined the role of T-bet and Eomes in the generation of tumor-specific memory T cell subsets upon adoptive transfer. We showed that combined T-bet and Eomes deficiency resulted in a severe reduction in the number of effector/central memory T cells but an increase in the percentage of CD62LhighCD44low Sca-1+ T cells which were similar to the phenotype of memory stem T cells. Despite preserving large numbers of phenotypic memory stem T cells, the lack of both of T-bet and Eomes resulted in a profound defect in antitumor memory responses, suggesting T-bet and Eomes are crucial for the antitumor function of these memory T cells. Our study establishes that T-bet and Eomes cooperate to promote the phenotype of effector/central memory CD8 T cell versus that of memory stem like T cells. © 2013 Li et al

    Electrically-driven phase transition in magnetite nanostructures

    Full text link
    Magnetite (Fe3_{3}O4_{4}), an archetypal transition metal oxide, has been used for thousands of years, from lodestones in primitive compasses[1] to a candidate material for magnetoelectronic devices.[2] In 1939 Verwey[3] found that bulk magnetite undergoes a transition at TV_{V} ≈\approx 120 K from a high temperature "bad metal" conducting phase to a low-temperature insulating phase. He suggested[4] that high temperature conduction is via the fluctuating and correlated valences of the octahedral iron atoms, and that the transition is the onset of charge ordering upon cooling. The Verwey transition mechanism and the question of charge ordering remain highly controversial.[5-11] Here we show that magnetite nanocrystals and single-crystal thin films exhibit an electrically driven phase transition below the Verwey temperature. The signature of this transition is the onset of sharp conductance switching in high electric fields, hysteretic in voltage. We demonstrate that this transition is not due to local heating, but instead is due to the breakdown of the correlated insulating state when driven out of equilibrium by electrical bias. We anticipate that further studies of this newly observed transition and its low-temperature conducting phase will shed light on how charge ordering and vibrational degrees of freedom determine the ground state of this important compound.Comment: 17 pages, 4 figure

    First direct observation of Dirac fermions in graphite

    Full text link
    Originating from relativistic quantum field theory, Dirac fermions have been recently applied to study various peculiar phenomena in condensed matter physics, including the novel quantum Hall effect in graphene, magnetic field driven metal-insulator-like transition in graphite, superfluid in 3He, and the exotic pseudogap phase of high temperature superconductors. Although Dirac fermions are proposed to play a key role in these systems, so far direct experimental evidence of Dirac fermions has been limited. Here we report the first direct observation of massless Dirac fermions with linear dispersion near the Brillouin zone (BZ) corner H in graphite, coexisting with quasiparticles with parabolic dispersion near another BZ corner K. In addition, we report a large electron pocket which we attribute to defect-induced localized states. Thus, graphite presents a novel system where massless Dirac fermions, quasiparticles with finite effective mass, and defect states all contribute to the low energy electronic dynamics.Comment: Nature Physics, in pres

    Effect of influenza on cardiorespiratory and all-cause mortality in Hong Kong, Singapore and Guangzhou.

    Get PDF
    1. Using a common modelling approach, mortality attributable to influenza was higher in the two subtropical cities Guangzhou and Hong Kong than in the tropical city Singapore. 2. The virus activity appeared more synchronised in subtropical cities, whereas seasonality of influenza tended to be less marked in the tropical city. 3. High temperature was associated with increased mortality after influenza infection in Hong Kong, whereas relative humidity was an effect modifier for influenza in Guangzhou. No effect modification was found for Singapore. 4. Seasonal and environmental factors probably play a more important role than socioeconomic factors in regulating seasonality and disease burden of influenza. Further studies are needed in identifying the mechanism behind the regulatory role of environmental factors.published_or_final_versio

    New miniPromoter Ple345 (NEFL) drives strong and specific expression in retinal ganglion cells of mouse and primate retina.

    Get PDF
    Retinal gene therapy is leading the neurological gene therapy field, with 32 ongoing clinical trials of recombinant adeno-associated virus (rAAV)-based therapies. Importantly, over 50% of those trials are using restricted promoters from human genes. Promoters that restrict expression have demonstrated increased efficacy and can limit the therapeutic to the target cells thereby reducing unwanted off-target effects. Retinal ganglion cells are a critical target in ocular gene therapy; they are involved in common diseases such as glaucoma, rare diseases such as Leber's hereditary optic neuropathy, and in revolutionary optogenetic treatments. Here, we used computational biology and mined the human genome for the best genes from which to develop a novel minimal promoter element(s) designed for expression in restricted cell types (MiniPromoter) to improve the safety and efficacy of retinal ganglion cell gene therapy. Gene selection included the use of the first available droplet-based single-cell RNA sequencing (Drop-seq) dataset, and promoter design was bioinformatically driven and informed by a wide range of genomics datasets. We tested seven promoter designs from four genes in rAAV for specificity and quantified expression strength in retinal ganglion cells in mouse, and then the single best in nonhuman primate retina. Thus, we developed a new human-DNA MiniPromoter, Ple345 (NEFL), which in combination with intravitreal delivery in rAAV9 showed specific and robust expression in the retinal ganglion cells of the nonhuman-primate rhesus macaque retina. In mouse, we also developed MiniPromoters expressing in retinal ganglion cells, the hippocampus of the brain, a pan neuronal pattern in the brain, and peripheral nerves. As single-cell transcriptomics such as Drop-seq become available for other cell types, many new opportunities for additional novel restricted MiniPromoters will present
    • …
    corecore