5,060 research outputs found

    Tectonic Settings of Magmatic Sulfide Deposits in China

    Get PDF
    published_or_final_versio

    Petrogenetic significance of chromian spinels from the Sudbury Igneous Complex, Ontario, Canada

    Get PDF
    Chromian spinels occur in mafic-ultramafic inclusions in the Sublayer of the Sudbury Igneous Complex (SIC) as well as in mafic-ultramafic rocks in the immediate footwall of the Sublayer. The host rocks are pyroxenite and melanorite with minor dunite, harzburgite, and melatroctolite. As common accessory phases in these rocks, the chromian spinels display euhedral or subhedral forms and are included in olivine and orthopyroxene. Chromian spinel grains generally have ilmenite lamellae and contain abundant inclusions (zircon, olivine, diopside, plagioclase, biotite, and sulfide). All the chromian spinels have similar trace element abundances and are rich in TiO2 (0.5-15 wt.%). They have constant Cr# (100Cr/(Cr + Al)) (55-70) and exhibit a continuum in composition that traverses the normal fields of spinels in a Al-(Fe3+ + 2Ti)-Cr triangular diagram. This continuum extends to that of the composition of chromian magnetite in the host norite matrix to the mafic -ultramafic inclusions. This continuum in composition of the spinels suggests that the noritic matrix to the Sublayer formed from the same magma as the inclusions. A positive correlation between the Cr and Al contents of the spinels was probably produced by dilution of these elements by Fe3+ contributed, perhaps, by a plagioclase-saturated melt. Zircon inclusions in a chromian spinel grain reflect incorporation of crustal, felsic materials into the magma before crystallization of chromian spinel. The chemical characteristics and mineral inclusions of the spinels suggest that the Sublayer formed in response to magma mixing. It is suggested that subsequent to the formation of the crustal melt, mantle-derived high-Mg magmas mixed vigourously with this and generated the magmatic sulfides that eventually formed the Ni - Cu - platinum-group elements sulfide ore deposits. Some of the early crystallization products of the high-Mg magma settled to the chamber floor, where they partially mixed with the crustal melt and formed the mafic - ultramafic inclusions and footwall complexes.published_or_final_versio

    Multiclass Semi-Supervised Learning on Graphs using Ginzburg-Landau Functional Minimization

    Full text link
    We present a graph-based variational algorithm for classification of high-dimensional data, generalizing the binary diffuse interface model to the case of multiple classes. Motivated by total variation techniques, the method involves minimizing an energy functional made up of three terms. The first two terms promote a stepwise continuous classification function with sharp transitions between classes, while preserving symmetry among the class labels. The third term is a data fidelity term, allowing us to incorporate prior information into the model in a semi-supervised framework. The performance of the algorithm on synthetic data, as well as on the COIL and MNIST benchmark datasets, is competitive with state-of-the-art graph-based multiclass segmentation methods.Comment: 16 pages, to appear in Springer's Lecture Notes in Computer Science volume "Pattern Recognition Applications and Methods 2013", part of series on Advances in Intelligent and Soft Computin

    SPOT-Seq-RNA: Predicting protein-RNA complex structure and RNA-binding function by fold recognition and binding affinity prediction

    Get PDF
    RNA-binding proteins (RBPs) play key roles in RNA metabolism and post-transcriptional regulation. Computational methods have been developed separately for prediction of RBPs and RNA-binding residues by machine-learning techniques and prediction of protein-RNA complex structures by rigid or semiflexible structure-to-structure docking. Here, we describe a template-based technique called SPOT-Seq-RNA that integrates prediction of RBPs, RNA-binding residues, and protein-RNA complex structures into a single package. This integration is achieved by combining template-based structure-prediction software, SPARKS X, with binding affinity prediction software, DRNA. This tool yields reasonable sensitivity (46 %) and high precision (84 %) for an independent test set of 215 RBPs and 5,766 non-RBPs. SPOT-Seq-RNA is computationally efficient for genome-scale prediction of RBPs and protein-RNA complex structures. Its application to human genome study has revealed a similar sensitivity and ability to uncover hundreds of novel RBPs beyond simple homology. The online server and downloadable version of SPOT-Seq-RNA are available at http://sparks-lab.org/server/SPOT-Seq-RNA/

    Strings on Semisymmetric Superspaces

    Get PDF
    Several string backgrounds which arise in the AdS/CFT correspondence are described by integrable sigma-models. Their target space is always a Z(4) supercoset (a semi-symmetric superspace). Here we list all semi-symmetric cosets which have zero beta function and central charge c<=26 at one loop in perturbation theory.Comment: 25 pages, 1 figur

    Ecological equivalence: a realistic assumption for niche theory as a testable alternative to neutral theory

    Get PDF
    Hubbell's 2001 neutral theory unifies biodiversity and biogeography by modelling steady-state distributions of species richness and abundances across spatio-temporal scales. Accurate predictions have issued from its core premise that all species have identical vital rates. Yet no ecologist believes that species are identical in reality. Here I explain this paradox in terms of the ecological equivalence that species must achieve at their coexistence equilibrium, defined by zero net fitness for all regardless of intrinsic differences between them. I show that the distinction of realised from intrinsic vital rates is crucial to evaluating community resilience. An analysis of competitive interactions reveals how zero-sum patterns of abundance emerge for species with contrasting life-history traits as for identical species. I develop a stochastic model to simulate community assembly from a random drift of invasions sustaining the dynamics of recruitment following deaths and extinctions. Species are allocated identical intrinsic vital rates for neutral dynamics, or random intrinsic vital rates and competitive abilities for niche dynamics either on a continuous scale or between dominant-fugitive extremes. Resulting communities have steady-state distributions of the same type for more or less extremely differentiated species as for identical species. All produce negatively skewed log-normal distributions of species abundance, zero-sum relationships of total abundance to area, and Arrhenius relationships of species to area. Intrinsically identical species nevertheless support fewer total individuals, because their densities impact as strongly on each other as on themselves. Truly neutral communities have measurably lower abundance/area and higher species/abundance ratios. Neutral scenarios can be parameterized as null hypotheses for testing competitive release, which is a sure signal of niche dynamics. Ignoring the true strength of interactions between and within species risks a substantial misrepresentation of community resilience to habitat los

    A Self-Reference False Memory Effect in the DRM Paradigm: Evidence from Eastern and Western Samples

    Get PDF
    It is well established that processing information in relation to oneself (i.e., selfreferencing) leads to better memory for that information than processing that same information in relation to others (i.e., other-referencing). However, it is unknown whether self-referencing also leads to more false memories than other-referencing. In the current two experiments with European and East Asian samples, we presented participants the Deese-Roediger/McDermott (DRM) lists together with their own name or other people’s name (i.e., “Trump” in Experiment 1 and “Li Ming” in Experiment 2). We found consistent results across the two experiments; that is, in the self-reference condition, participants had higher true and false memory rates compared to those in the other-reference condition. Moreover, we found that selfreferencing did not exhibit superior mnemonic advantage in terms of net accuracy compared to other-referencing and neutral conditions. These findings are discussed in terms of theoretical frameworks such as spreading activation theories and the fuzzytrace theory. We propose that our results reflect the adaptive nature of memory in the sense that cognitive processes that increase mnemonic efficiency may also increase susceptibility to associative false memories

    Analysis of dendritic cells in tumor-free and tumor-containing sentinel lymph nodes from patients with breast cancer

    Get PDF
    INTRODUCTION: Sentinel lymph node (SLN) biopsy allows identification of the first lymph node into which a primary tumor drains. In breast cancer, identification of tumor cells in the SLNs is a predictor of the tumor's metastatic potential. In the present article, we tested the hypotheses that a positive immune response can occur in tumor-free SLNs and that the activation state of dendritic cells (DCs), the major antigen presenting cells within SLNs, predicts the immune status and metastatic potential of the tumor. METHODS: Fifty paraffin-embedded SLN sections, 25 tumor-free and 25 tumor-containing, from patients with breast cancer were analyzed by immunohistochemistry to determine the immune maturation state of their DCs. In addition, 12 lymph nodes from noncancer-containing breasts were analyzed. Tissues were stained with antibodies against CD3, MHC class II, CD1a, CD83, IL-10, and IL-12. Mature DCs were defined by CD83 expression and immature DCs by CD1a expression. RESULTS: We found a trend toward higher numbers of mature CD83-positive DCs in tumor-free SLNs than in tumor-containing SLNs (P = 0.07). In addition, tumor-free SLNs were more likely to contain cells expressing IL-10 (P = 0.02) and, to a lesser extent, IL-12 (P = 0.12). In contrast, when all SLNs, both tumor-free and tumor-containing, were compared with uninvolved lymph nodes, the numbers of mature and immature DCs were similar. CONCLUSIONS: Our results suggest tumor-free SLNs are immunologically competent and potentially a site of tumor-specific T-cell activation, as evidenced by the presence of greater numbers of mature DCs and cytokine-producing cells in tumor-free SLNs

    Evidence for the classical integrability of the complete AdS(4) x CP(3) superstring

    Get PDF
    We construct a zero-curvature Lax connection in a sub-sector of the superstring theory on AdS(4) x CP(3) which is not described by the OSp(6|4)/U(3) x SO(1,3) supercoset sigma-model. In this sub-sector worldsheet fermions associated to eight broken supersymmetries of the type IIA background are physical fields. As such, the prescription for the construction of the Lax connection based on the Z_4-automorphism of the isometry superalgebra OSp(6|4) does not do the job. So, to construct the Lax connection we have used an alternative method which nevertheless relies on the isometry of the target superspace and kappa-symmetry of the Green-Schwarz superstring.Comment: 1+26 pages; v2: minor typos corrected, acknowledgements adde

    Dual-gated bilayer graphene hot electron bolometer

    Full text link
    Detection of infrared light is central to diverse applications in security, medicine, astronomy, materials science, and biology. Often different materials and detection mechanisms are employed to optimize performance in different spectral ranges. Graphene is a unique material with strong, nearly frequency-independent light-matter interaction from far infrared to ultraviolet, with potential for broadband photonics applications. Moreover, graphene's small electron-phonon coupling suggests that hot-electron effects may be exploited at relatively high temperatures for fast and highly sensitive detectors in which light energy heats only the small-specific-heat electronic system. Here we demonstrate such a hot-electron bolometer using bilayer graphene that is dual-gated to create a tunable bandgap and electron-temperature-dependent conductivity. The measured large electron-phonon heat resistance is in good agreement with theoretical estimates in magnitude and temperature dependence, and enables our graphene bolometer operating at a temperature of 5 K to have a low noise equivalent power (33 fW/Hz1/2). We employ a pump-probe technique to directly measure the intrinsic speed of our device, >1 GHz at 10 K.Comment: 5 figure
    • …
    corecore