1,096 research outputs found

    2-Chloro-N-[(4-chloro­phen­yl)(phen­yl)meth­yl]-N-[2-(4-nitro-1H-imidazol-1-yl)eth­yl]ethanamine

    Get PDF
    In the title compound, C20H20Cl2N4O2, the nitro­imidazole ring makes dihedral angles of 17.00 (1) and 60.45 (11)° with the phenyl and chloro­phenyl rings, respectively. The three-coordinate N atom connected to two methyl­ene and one methine C atoms shows pyramidal coordination

    Enhanced Temperature Control Method Using ANFIS with FPGA

    Get PDF
    Temperature control in etching process is important for semiconductor manufacturing technology. However, pressure variations in vacuum chamber results in a change in temperature, worsening the accuracy of the temperature of the wafer and the speed and quality of the etching process. This work develops an adaptive network-based fuzzy inference system (ANFIS) using a field-programmable gate array (FPGA) to improve the effectiveness. The proposed method adjusts every membership function to keep the temperature in the chamber stable. The improvement of the proposed algorithm is confirmed using a medium vacuum (MV) inductively-coupled plasma- (ICP-) type etcher

    A solvable model for the diffusion and reaction of neurotransmitters in a synaptic junction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The diffusion and reaction of the transmitter acetylcholine in neuromuscular junctions and the diffusion and binding of Ca<sup>2+ </sup>in the dyadic clefts of ventricular myocytes have been extensively modeled by Monte Carlo simulations and by finite-difference and finite-element solutions. However, an analytical solution that can serve as a benchmark for testing these numerical methods has been lacking.</p> <p>Result</p> <p>Here we present an analytical solution to a model for the diffusion and reaction of acetylcholine in a neuromuscular junction and for the diffusion and binding of Ca<sup>2+ </sup>in a dyadic cleft. Our model is similar to those previously solved numerically and our results are also qualitatively similar.</p> <p>Conclusion</p> <p>The analytical solution provides a unique benchmark for testing numerical methods and potentially provides a new avenue for modeling biochemical transport.</p

    Sting Agonist-Loaded Mesoporous Manganese-Silica Nanoparticles for Vaccine Applications

    Get PDF
    Cyclic dinucleotides (CDNs), as one type of Stimulator of Interferon Genes (STING) pathway agonist, have shown promising results for eliciting immune responses against cancer and viral infection. However, the suboptimal drug-like properties of conventional CDNs, including their short in vivo half-life and poor cellular permeability, compromise their therapeutic efficacy. In this study, we have developed a manganese-silica nanoplatform (MnOx@HMSN) that enhances the adjuvant effects of CDN by achieving synergy with Mn2+ for vaccination against cancer and SARS-CoV-2. MnOx@HMSN with large mesopores were efficiently co-loaded with CDN and peptide/protein antigens. MnOx@HMSN(CDA) amplified the activation of the STING pathway and enhanced the production of type-I interferons and other proinflammatory cytokines from dendritic cells. MnOx@HMSN(CDA) carrying cancer neoantigens elicited robust antitumor T-cell immunity with therapeutic efficacy in two different murine tumor models. Furthermore, MnOx@HMSN(CDA) loaded with SARS-CoV-2 antigen achieved strong and durable (up to one year) humoral immune responses with neutralizing capability. These results demonstrate that MnOx@HMSN(CDA) is a versatile nanoplatform for vaccine applications

    Comparisons of the risk of myopericarditis between COVID-19 patients and individuals receiving COVID-19 vaccines: a population-based study.

    Get PDF
    Both COVID-19 infection and COVID-19 vaccines have been associated with the development of myopericarditis. The objective of this study is to (1) analyse the rates of myopericarditis after COVID-19 infection and COVID-19 vaccination in Hong Kong, (2) compared to the background rates, and (3) compare the rates of myopericarditis after COVID-19 vaccination to those reported in other countries. This was a population-based cohort study from Hong Kong, China. Patients with positive RT-PCR test for COVID-19 between 1st January 2020 and 30th June 2021 or individuals who received COVID-19 vaccination until 31st August were included. The main exposures were COVID-19 positivity or COVID-19 vaccination. The primary outcome was myopericarditis. This study included 11,441 COVID-19 patients from Hong Kong, four of whom suffered from myopericarditis (rate per million: 326; 95% confidence interval [CI] 127-838). The rate was higher than the pre-COVID-19 background rate in 2019 (rate per million: 5.5, 95% CI 4.1-7.4) with a rate ratio of 55.0 (95% CI 21.4-141). Compared to the background rate, the rate of myopericarditis among vaccinated subjects in Hong Kong was similar (rate per million: 5.5; 95% CI 4.1-7.4) with a rate ratio of 0.93 (95% CI 0.69-1.26). The rates of myocarditis after vaccination in Hong Kong were comparable to those vaccinated in the United States, Israel, and the United Kingdom. COVID-19 infection was associated with significantly higher rate of myopericarditis compared to the vaccine-associated myopericarditis. [Abstract copyright: © 2022. The Author(s).

    A Binary-Medium Constitutive Model for Artificially Structured Soils Based on the Disturbed State Concept and Homogenization Theory

    Get PDF
    Triaxial compression tests were carried out on artificially structured soil samples at confining pressures of 25, 37.5, 50, 100, 200, and 400 kPa. A binary-medium constitutive model for artificially structured soils is proposed based on the experimental results, the disturbed state concept (DSC), and homogenization theory. A new constitutive model for artificially structured soils was formulated by regarding the structured soils as a binary medium consisting of bonded blocks and weakened bands. The bonded blocks are idealized as bonded elements whose deformation properties are described by elastic materials, and the weakened bands are idealized as frictional elements whose deformation properties are described by the Lade-Duncan model. By introducing the structural parameters of breakage ratio and local strain coefficient, the nonuniform distribution of stress and strain within a representative volume element can be given based on the homogenization theory of heterogeneous materials. The methods for determination of the model parameters are given on the basis of experimental results. Comparisons of predictions with experimental data demonstrate that the new model provides satisfactory qualitative and quantitative modeling of many important features of artificially structured soils

    Rescue of mesangial cells from high glucoseinduced over-proliferation and extracellular matrix secretion by hydrogen sulfide

    Get PDF
    Abstract Background. Hydrogen sulfide (H 2 S) is considered as the third gasotransmitter after nitric oxide and carbon monoxide. This gas molecule participates in the regulation of renal function. Diabetic nephropathy (DN) is one of the major chronic complications of diabetes. The present study aimed to explore the changes in H 2 S metabolism in the early stage of DN and the effects of H 2 S on cultured rat renal glomerular mesangial cells (MCs). Methods. Cultured rat MCs and streptozotocin (STZ)-induced diabetic rats were used in this study. Expression levels of cystathionine γ-lyase (CSE), transforming growth factor-β1 (TGF-β1) and collagen IV in rat renal cortex and in cultured MCs were determined by quantitative real-time PCR and western blot. Reactive oxygen species (ROS) released from rat MCs was assessed by fluorescent probe assays. MCs proliferation was analyzed by 5′-bromo-2′-deoxyuridine incorporation assay. Results. H 2 S levels in the plasma and renal cortex and the levels of CSE messenger RNA (mRNA) and protein in renal cortex were significantly reduced, while the levels of TGF-β1 and collagen IV increased 3 weeks after STZ injection. Administration of NaHS, a H 2 S donor, reversed the increases in TGF-β1 and collagen IV in diabetic rats. By contrast, NaHS did not alter the TGF-β1 and collagen IV levels in non-diabetic rats. But NaHS lowered the CSE mRNA level in renal cortex. Exposure to high glucose promoted ROS generation and cell proliferation, up-regulated the expression of TGF-β1 and collagen IV but decreased the CSE expression in cultured MCs. Treatment of cultured MCs with NaHS reversed the effect of high glucose. NaHS did not change ROS generation, cell proliferation, TGF-β1 and collagen IV expression in the cells cultured with normal glucose. Reduction of endogenous H 2 S generation by DLpropargylglycine, a CSE inhibitor, produced similar cellular effects as high glucose, including increases in cell proliferation, TGF-β1 and collagen IV expressions and ROS generation. Conclusion. Suppressed CSE-catalyzed endogenous H 2 S production in the kidney by hyperglycemia may play an important role in the pathogenesis of DN
    corecore