4,908 research outputs found

    Reframing the L2 learning experience as narrative reconstructions of classroom learning

    Get PDF
    In this study we investigate the situated and dynamic nature of the L2 learning experience through a newly-purposed instrument called the Language Learning Story Interview, adapted from McAdams’ life story interview (2007). Using critical case sampling, data were collected from an equal number of learners of various L2s (e.g., Arabic, English, Mandarin, Spanish) and analyzed using qualitative comparative analysis (Rihoux & Ragin, 2009). Through our data analysis, we demonstrate how language learners construct overarching narratives of the L2 learning experience and what the characteristic features and components that make up these narratives are. Our results provide evidence for prototypical nuclear scenes (McAdams et al., 2004) as well as core specifications and parameters of learners’ narrative accounts of the L2 learning experience. We discuss how these shape motivation and language learning behavior

    Dual Stage Stylization Modulation for Domain Generalized Semantic Segmentation

    Full text link
    Obtaining sufficient labeled data for training deep models is often challenging in real-life applications. To address this issue, we propose a novel solution for single-source domain generalized semantic segmentation. Recent approaches have explored data diversity enhancement using hallucination techniques. However, excessive hallucination can degrade performance, particularly for imbalanced datasets. As shown in our experiments, minority classes are more susceptible to performance reduction due to hallucination compared to majority classes. To tackle this challenge, we introduce a dual-stage Feature Transform (dFT) layer within the Adversarial Semantic Hallucination+ (ASH+) framework. The ASH+ framework performs a dual-stage manipulation of hallucination strength. By leveraging semantic information for each pixel, our approach adaptively adjusts the pixel-wise hallucination strength, thus providing fine-grained control over hallucination. We validate the effectiveness of our proposed method through comprehensive experiments on publicly available semantic segmentation benchmark datasets (Cityscapes and SYNTHIA). Quantitative and qualitative comparisons demonstrate that our approach is competitive with state-of-the-art methods for the Cityscapes dataset and surpasses existing solutions for the SYNTHIA dataset. Code for our framework will be made readily available to the research community

    Microbial diversity dynamics in a methanogenic-sulfidogenic UASB reactor

    Get PDF
    In this study, the long-term performance and microbial dynamics of an Upflow Anaerobic Sludge Blanket (UASB) reactor targeting sulfate reduction in a SOx emissions treatment system were assessed using crude glycerol as organic carbon source and electron donor under constant S and C loading rates. The reactor was inoculated with granular sludge obtained from a pulp and paper industry and fed at a constant inlet sulfate concentration of 250 mg S-SO42−L−1 and a constant C/S ratio of 1.5 ± 0.3 g Cg−1 S for over 500 days. Apart from the regular analysis of chemical species, Illumina analyses of the 16S rRNA gene were used to study the dynamics of the bacterial community along with the whole operation. The reactor was sampled along the operation to monitor its diversity and the changes in targeted species to gain insight into the performance of the sulfidogenic UASB. Moreover, studies on the stratification of the sludge bed were performed by sampling at different reactor heights. Shifts in the UASB performance correlated well with the main shifts in microbial communities of interest. A progressive loss of the methanogenic capacity towards a fully sulfidogenic UASB was explained by a progressive wash-out of methanogenic Archaea, which were outcompeted by sulfate-reducing bacteria. Desulfovibrio was found as the main sulfate-reducing genus in the reactor along time. A progressive reduction in the sulfidogenic capacity of the UASB was found in the long run due to the accumulation of a slime-like substance in the UASB

    Experimental Selection for Drosophila Survival in Extremely High O2 Environments

    Get PDF
    Although oxidative stress is deleterious to mammals, the mechanisms underlying oxidant susceptibility or tolerance remain to be elucidated. In this study, through a long-term laboratory selection over many generations, we generated a Drosophila melanogaster strain that can live and reproduce in very high O2 environments (90% O2), a lethal condition to naïve flies. We demonstrated that tolerance to hyperoxia was heritable in these flies and that these hyperoxia-selected flies exhibited phenotypic differences from naïve flies, such as a larger body size and increased weight by 20%. Gene expression profiling revealed that 227 genes were significantly altered in expression and two third of these genes were down-regulated. Using a mutant screen strategy, we studied the role of some altered genes (up- or down-regulated in the microarrays) by testing the survival of available corresponding P-element or UAS construct lines under hyperoxic conditions. We report that down-regulation of several candidate genes including Tropomyosin 1, Glycerol 3 phosphate dehydrogenase, CG33129, and UGP as well as up-regulation of Diptericin and Attacin conferred tolerance to severe hyperoxia. In conclusion, we identified several genes that were not only altered in hyperoxia-selected flies but we also prove that these play an important role in hyperoxia survival. Thus our study provides a molecular basis for understanding the mechanisms of hyperoxia tolerance
    • …
    corecore