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Abstract

The production of organ parenchyma in a rapid and reproducible manner is critical to normal development. In chimeras
produced by the combination of genetically distinguishable tissues, mosaic patterns of cells derived from the combined
genotypes can be visualized. These patterns comprise patches of contiguously similar genotypes and are different in different
organs but similar in a given organ from individual to individual. Thus, the processes that produce the patterns are regulated
and conserved. We have previously established that mosaic patches in multiple tissues are fractal, consistent with an iterative,
recursive growth model with simple stereotypical division rules. Fractal dimensions of various tissues are consistent with
algorithmic models in which changing a single variable (e.g. daughter cell placement after division) switches the mosaic
pattern from islands to stripes of cells. Here we show that the spiral pattern previously observed in mouse cornea can also be
visualized in rat chimeras. While it is generally held that the pattern is induced by stem cell division dynamics, there is an
unexplained discrepancy in the speed of cellular migration and the emergence of the pattern. We demonstrate in chimeric rat
corneas both island and striped patterns exist depending on the age of the animal. The patches that comprise the pattern are
fractal, and the fractal dimension changes with the age of the animal and indicates the constraint in patch complexity as the
spiral pattern emerges. The spiral patterns are consistent with a loxodrome. Such data are likely to be relevant to growth and
cell division in organ systems and will help in understanding how organ parenchyma are generated and maintained from
multipotent stem cell populations located in specific topographical locations within the organ. Ultimately, understanding
algorithmic growth is likely to be essential in achieving organ regeneration in vivo or in vitro from stem cell populations.
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Introduction

The development of mammalian organs requires key steps. First,

the parenchyma mass must form from appropriate cells in the right

location and at the right time. Once the mass is formed, the cells

must divide and expand to produce the parenchyma compartment.

With carefully regulated expansion, growth and differentiation the

primordial tissue develops into a functional organ [1].

Examining mosaic patches (aggregates of cells of the same

parental lineage in tetraparental mosaic animals known as

chimeras) in some tissues reveals that the cellular patterns formed

are complex in geometry and have characteristic fractal dimen-

sions [2–6]. For example, we showed that characteristic fractal

dimensions are associated with liver growth and modeled growth

as a procession of regular and iterative rule based cell division [4].

Stereotypical and iterative rules for cell division may be the way

rapid organ growth could be regulated by just a few genes.

Examining mosaic pattern was also used to establish that

preneoplastic lesions and cancer in the liver are clonal, thus

develop from single cells as a result of stochastic processes [7–9].

The forces that create the mosaic pattern; cell division, cell

movement and cell death can be simulated and then compared

with mosaic pattern observed in animals [10]. In the liver, cell

divisions can be modeled by random placement of daughter cells,

which is sufficient to create realistic patterns. In simulations of

growth of the adrenal cortex the placement of daughter cells must

be biased by a force (e.g., cell adhesion) during division that tends

to keep daughters cells spatially contiguous in order to create a

realistic pattern. Importantly, fractal dimension is a useful tool to

express the differences between liver and adrenal growth patterns

[10]. Previous work with rat chimeras combined embryonic tissues

from genetically distinguishable congenic strains differing at the

RT-1 locus. Monoclonal antibodies that were radioactively labeled

were used to determine the parental lineage (strain of origin) of

specific cells and tissues. Fluorescent proteins such as enhanced

green fluorescent protein (eGFP) provide the opportunity to

examine mosaic patches with much more clarity and resolution

utilizing confocal microscopy than with previous techniques. Here

we show that the liver and adrenal glands from rat chimeras with

eGFP markers show the same underlying distribution of cells in

patches as we have shown previously with other markers but that

the data can be obtained with single cell resolution.

The cornea presents a spiral pattern previously shown in mouse

[11] that we show here is conserved in the rat. The cornea grows
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from limbal stem cells (LSC) and a commonly held view is that the

progeny of the LSC either migrate centripetally or are left behind

as a constrained trail of cell division history thus creating the

pinwheel pattern. However, a number of fine detail aspects of the

patterns observed here in the rat and previously in the mouse,

including a central whorl and branching are not explained by stem

cell mechanics alone. Moreover, a patchy island-like pattern

persists for about two months in both the mouse and the rat and its

fairly rapid transition to a spiral pattern is not easily explained by

stem cell division pattern driven mechanisms.

Here we show that patterns observed in the mouse cornea are also

seen in the rat in unbiased (i.e., the development of the tissue and

mosaicism are independent) aggregation chimeras using markers

that are independent of the corneal epithelium. This supports the

contention that the patterns are representative of fundamental

processes of consequence to correct tissue construction. We show

that the transition between fundamentally distinct patterns in the rat

cornea that occurs rapidly at about 2–3 months of age can be

detected by plotting fractal dimension over time. We demonstrate

computationally that spiral patch patterns are most like loxodromes,

pathways to the pole of a sphere with invariant heading.

Materials and Methods

Chimeras
To generate animals with unequivocal genetic markers we

produced chimeric rats by morula amalgamation [1,12–14]. SD

and SD-eGFP strains of rat were used such that two morulae, one

from each strain, were aggregated with established procedures. The

SD-eGFP strain is a transgenic produced by injection of lentivirus

(FUGW, the kind gift of Carlos Lois, MIT) into the perivitelline

space of one-cell embryos with subsequent transfer to pseudopreg-

nant surrogate mothers. FUGW utilizes the human polyubiquitin-C

promoter which has been shown to drive robust expression of

transgenes [15]. The SD-eGFP strain used was selected because of

its ubiquitous, uniform, stable high expression of eGFP in tissues.

Liver sections from seven transgenic animals were examined with

confocal microscopy (described below) and in 14 sections all but two

were uniformly (100%) fluorescent. The adrenal glands were

examined in three of the animals; these showed evidence of

transgene silencing (up to 30% of the total area was non-fluorescent

in one animal) as has been previously reported [16]. Corneas were

examined in three transgenic animals and one of them showed a

coherent area, less than 1% of the total area lacking fluorescence.

The others were uniformly fluorescent. Some minor variations in

signal intensity were noted. In preliminary experiments we

combined eight pairs of morulae where each partner was transgenic.

Four of these pairs developed into blastocysts and all were

completely fluorescent from GFP expression as predicted.

Thus, one of the morulae of each of the pairs was modified

genetically such that it produced enhanced green fluorescent

protein (eGFP). When this was paired with a wild type morula,

they combined to form a chimeric rat embryo (Figure 1). Use of a

fluorescent microscope allowed for the visualization of the marked

cells. All animal work was conducted in our Association for

Assessment and Accreditation of Laboratory Animal Care Interna-

tional (AAALAC) accredited facilities with Institutional Animal

Care and Use Committee (IACUC) approval (protocol 95018).

Visualization
The rat chimeras were identified and photographed using

intense blue LED illumination (BLS Ltd, Budapest, Hungary).

Tissues obtained from the chimeras were examined and imaged

with a Zeiss META 510 confocal laser-scanning microscope. The

data were imported and rendered with Volocity software (Perkin

Elmer, Inc., U.S.A.).

Tissues
The tissues were prepared by first thoroughly perfusing the

animal to remove red blood cells from the tissue, which otherwise

could cause autofluorescence related signal interference. Next, the

animal was fixed using 4% paraformaldehyde by perfusion. The

organs were then dissected and stored in 4% paraformaldehyde

overnight and then in 1% paraformaldehyde.

One day prior to sectioning, the tissues were transferred to a

30% sucrose solution. The tissue was mounted and frozen then cut

at 35 mm on a Leica (CM 3050 S) cryostat. Adjacent serial sections

were prepared and mounted on glass slides with PBS then stored

in a humidity chamber to prevent them from drying out. For

preparation of the corneas the eyes were stored in 4%

paraformaldehyde and the corneas dissected, flattened with short

radial cuts and mounted with PBS under a glass slide in an optical

quality glass-bottom culture dish (World Precision Instruments).

Microscopic Imaging
Slides were imaged through a 25 X Zeiss multi-immersion 0.8

NA objective on a Zeiss 510 inverted fluorescent confocal

microscope equipped with a motorized stage. Using the motorized

stage we could capture many fields of view and tile them together

to form a large montage of the section. This allowed us to capture

areas larger than 4 mm by 4 mm without sacrificing the resolution

necessary for analysis.

The images were histogram stretched to yield the best dynamic

range for the signal. A median filter was applied to remove any

potential noise from the acquisition of the image. Once the image

was binary (all pixels were either black or white, or thought of as

‘‘off’’ or ‘‘on’’, respectively), the image was analyzed to determine

the fractal dimension as described below.

The images collected from the liver and adrenal gland were

processed further to prepare them for three-dimensional reconstruc-

tion. The images were aligned in serial and then loaded into software

to form a 3D model of the sections (Volocity, Perkin Elmer).

Surface and mass fractal dimension were established with a

variety of methods [4,10]. For example, surface fractal dimension

of the adrenal cortical patches was previously determined by using

the yardstick method [17] where yardsticks of different lengths (e)

were used to measure the length of the perimeter of a patch (L(e)).

Then fractal dimension (D) was determined as 1 - the slope of the

regression of log L(e) plotted against log (e). Here we used the box

counting method [18] where a grid of boxes of various sizes is

applied to the object and the number of boxes required to cover

the perimeter of the object is determined for a large number of box

sizes. The slope of the log-log plot of box size versus the number of

boxes occupied by the object’s perimeter is –D. We have shown

previously that there is excellent agreement between surface fractal

dimensions determined by box counting and the yardstick method.

Hemisphere projection
The coordinate (x,y) data points of patch edges were collected

from the original cornea images and entered into MS Excel. These

data were used to calculate the projected cylindrical coordinates in

3D, r is the distance from the longitudinal axis, w is the angular

coordinate, and z is the height along the longitudinal axis.

To project the image onto the hemisphere, a point’s distance

from the center of the image was set to the arclength from the apex

of the hemisphere (Figure 2).

Its angular component remained consistent, and its projected

height was calculated from the arclength, which corresponds to
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how far down the point was draped. The following equations were

used for the calculations:

r~rSin
R

r

� �

w~A sin
y

R

� �
, for x§0;

w~p{A sin
y

R

� �
, for xv0;

z~rCos
R

r

� �

Where R~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2zy2

p
, the distance of the point from the center of

the image, and r is the radius of the hemisphere.

These projected data points were put into Apple’s Grapher

program to make a 3D model of the corneal patches.

Spiral Curve Fitting
Fitting curves to the patch edges seen in the chimeric corneas

consisted of several steps. First starting with general equations we

described the geometry of the patches. Chaudhuri, et al. [19]

reported that while the conic constant, a measure of the

eccentricity of the surface, of an individual rat’s anterior cornea

is closer to an ellipse, the mean conic constant of many individuals

Figure 1. Production of rat chimeras. Rat chimeras were produced by morulae aggregation where one morula is from a transgenic eGFP lineage
and the other is of wild type lineage. (A) These distinct cell lineages can be seen in the embryos before implantation. (B) Further culturing of these
embryos reveals the labeled cells integrating into the inner cell mass. (C) A newborn chimera pup, right half of photograph, can be easily
distinguished from a non-chimeric littermate, barely seen in the left half of the photograph, when visualized under blue light. (D) A transgenic eGFP
blastocyst. Some areas of the transmitted image, where the light isn’t restricted by the confocal aperture around the zona pelucida and the periphery
of the blastocyst are out of focus which doesn’t occur in the fluorescent image where all cells in the inner cell mass as well as the trophectoderm are
clearly labeled with eGFP. Scale bars in (A), (B) and (D) are 20 mm.
doi:10.1371/journal.pone.0031609.g001
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is closer to zero and therefore may be better fit by circles. To

generalize the corneas of all animals examined, we started with the

assumed surface of a sphere and patch edges as spherical spirals

defined by the following parametric equations:

x~
Cos(t)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1za2t2
p

y~
Sin(t)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1za2t2
p

z~{
atffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1za2t2
p

The flattened corneas produced two-dimensional images while

the curve traced by a spherical spiral is three-dimensional, so to

allow comparisons the idealized curves were transformed. A

stereographic projection of the spherical spiral produces a two-

dimensional curve suitable for fitting to the cornea images and is a

logarithmic spiral. These transformed spirals were used as the basis

for curve fitting the patch edges, and the stereographic projection

was performed as follows:

x~kCos(w)Sin(l{l0)

y~k Cos(w1)Sin(w){Sin(w1)Cos(w)Cos(l{l0)½ �

Where,

k~
2r

1zSin(w1)Sin(w)zCos(w1)Cos(w)Cos(l{l0)

and l is the inclination, l0 is the central inclination, w is the

azimuth, and w1 is the central azimuth (set to p/2) of projection as

described in the Wolfram MathWorld page on Stereographic

Projection [20] (Weisstein, Eric W. ‘‘Stereographic Projection.’’

From MathWorld–A Wolfram Web Resource. http://mathworld.

wolfram.com/StereographicProjection.html).

Since this projection requires the data points to be in spherical

coordinates (radius, inclination, and azimuth) instead of the

Cartesian coordinates yielded from our equations of the spherical

spiral equations, they were transformed as follows:

r~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2zy2zz2

p

Inclination~A cos
z

r

� �

Azimuth~A tan
y

x

� �

The fitting of the spiral to the data was achieved visually by

adjusting the parameters of the equations, a and l0. An affine shift

was introduced to account for error in the assumed position of the

center of the cornea’s spiral as well as an independent stretching

factor in x and y to account for an observed eccentricity. This

eccentricity could be due to non-uniform eye shape in the animal

discussed above and in Chaudhuri, et al. [19] or due to directional

bias of cellular or patch movement.

Finally, selected points were manually transcribed and overlaid

onto the original data using Photoshop to show the relation

between the fitted spirals and the original cornea patch data.

Some patch edges were compared to logarithmic spirals by

measuring the distance from the assumed center of the spiral to the

patch edge at arbitrary points. For a logarithmic spiral the distance

should increase exponentially as one moves along the curve. These

measurements were compared to those obtained in the same way

from an ideal logarithmic spiral and to an Archimedean spiral.

The results were plotted as distance (vector length) vs. the angle

(theta) between the line from the center of the spiral to the

innermost point along the edge of the spiral and lines from the

center of the spiral to arbitrary points further along the spiral. The

correlation coefficients (r2) of the fit to an exponential curve were

calculated and compared to r2 of the linear fits. One turn of the

spiral is 2 pi radians or 360 degrees. The calculations and plots

were done using Excel.

Results

Chimeras
Figure 1 shows the production of chimeras. The mixture of cells

in the developing embryo is evident by the blastocyst stage. The

inner cell masses also show mixtures of eGFP marked and

unmarked cells. This is also reflected in the newborn animals

shown in the figure. Patchy expression of eGFP (green) in the skin

is evidence of chimerism.

Liver and Adrenal
Previous studies have shown that the mixtures of cells in the

adult organs are variable in proportion from tissue to tissue but are

arrayed in some tissues in characteristic patterns. This result is

obtained with SD,-.SDeGFP rat chimeras as well. Figure 3A

shows the characteristic islands in a sea appearance of the liver.

The fractal nature of the patches of lineage related cells is well

established. The implication of the extension of these patterns into

3 dimensions suggests that highly complex interconnected patches

would be obtained at some critical proportion of marked cells.

Previous studies with computer simulations indicate that this is

likely to occur at proportions of marked cells close to 50% [21].

Figure 3A and Figure 3B show examples of 3 dimensional

reconstructions of liver sections from rat chimeras. For a more

detailed look, Figures S1 and S2 show the reconstructions of the

liver being rotated in 3 dimensions.

The adrenal cortex of chimeras comprises cords of cells that

originate from the outside of the organ and extend inwardly

during development (Figure 3C, D). There are several possible

ways in which this growth could occur. Three dimensional

reconstruction of the organ (Figure 3C) allows us to conclude that

the cords are arrayed like pencils in a cup from random patches

Figure 2. Projection of rat chimera corneal image onto a
hemisphere. The cornea image, seen as the line across the top of the
figure, was centered at the apex of a hemisphere, seen as the arc
beneath the line, at point C. The location of the projected point P’ on
the hemisphere was calculated from the distance of the original point P
on the image such that arclength CP’ is equal to the original length CP.
doi:10.1371/journal.pone.0031609.g002
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oriented on the outside of the organ and inward growth with

biased daughter cell positioning [22,23]. This strongly implies that

growth is algorithmic [23]. The eGFP marked chimeras replicate

previous results with different markers in the liver and the adrenal

gland. Figure S3 is an animation of the reconstruction of the

adrenal gland in 3 dimensions.

Cornea
Another example of constrained growth in the organs of these

animals is in the cornea. As the cornea develops there are two

distinct growth patterns. One is like the liver, islands in a sea, while

the other is like the adrenal cortex with stripes of cells coherently of

the same lineage. The pattern is further modified by a pinwheel

effect (Figure 4). This pattern is highly reminiscent of spiral

phylotaxis, for example, the systematic array of seeds or florets in a

flower [24].

The spiral pattern comprises epithelial patches with little lateral

mixing across the boundary (Figure 5). The endothelium in

contrast does not show a constrained spiral pattern but one more

like the liver (Figure 4C). In addition, on antero-posterior sections

through the corneal thickness, the patches in the endothelium also

appear unrelated to those of the epithelium (Figure 5).

Fractal Dimension
Thirty corneas were examined from a total of 20 rat chimeras

varying in age from eight days to 18 months of age. Fourteen

corneas from nine animals displayed a well-developed spiral

pattern; six corneas had a clockwise spiral and eight corneas a

counter-clockwise spiral. Of the nine animals with spiral patterns

both corneas were examined in five and of these four animals had

opposite handedness in the spiral patterns in their corneas. In two

of the 20 rat chimeras the three corneas examined had a striped

pattern with little or no indication of spiral curvature. Two corneas

from one animal could not be evaluated. The remaining 11

corneas from eight animals (all under 2 months of age) were

patchy.

The patches are fractal and the surface fractal dimension can be

calculated (Figure 6). Overall the average surface fractal dimension

from 34 samples of 30 individual corneas obtained from 20

chimeras was 1.31. Control corneas from two transgenic and two

Figure 3. Three-dimensional reconstruction of chimeric rat liver and adrenal gland. (A) Liver from a chimeric rat was sectioned at 35 mm
and imaged with confocal microscopy. One plane of focus was used to represent each 35 mm section. These sections were then stacked and aligned
to render a three dimensional model illustrating the complex interconnected nature of the patches. The total area shown is approximately 4 mm by
4 mm with the eGFP lineage shown as green. (B) A higher magnification view of liver from a chimeric rat, the three-dimensional rendering was
produced in a similar fashion as in (A) except that it was imaged under higher power to illustrate the detail of fluorescent patches with a total area
shown approximately 0.35 mm by 0.35 mm. (C) This process of rendering a three dimensional model was repeated with cross sections of the adrenal
gland. This highlights the radial cord-like structure of the fluorescent patches in the adrenal cortex, which are reminiscent of pencils in a cup. The
total area shown is approximately 4 mm by 4 mm. (D) Cross section through the chimeric adrenal gland illustrates two types of patches: the clonally
derived radial cord-like patterning of the interior of the cortex, and the stem-like appearance of the outer surface. The scale bar is 100 mm. Shown in
(A), (B), and (C) are the first frames of animations of the rendered models being rotated. The full movies can be seen in Figure S1, Figure S2, and
Figure S3 respectively.
doi:10.1371/journal.pone.0031609.g003
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non-transgenic rats show predicted expression of eGFP. However,

in less than 1% of the area of GFP transgenic corneas unexpected

coherent areas without eGFP expression was observed. In some of

the transgenic corneas minor variation in expression levels of GFP

were observed.

The spiral pattern is not present from birth, however. At young

ages the cornea has a patch pattern similar to that of the liver,

‘‘islands in a sea’’ (Figure 4). The pattern changes to a spiral fairly

abruptly beginning at 2 months of age (Figure 7). As the spiral

develops the overall shape of the patch becomes constrained and

as might be predicted the fractal dimension decreases with age

(Figure 8) as the degree of spiral formation increases. The overall

average surface fractal dimension of the patches in 9 corneas from

animals greater than 2 mo of age is 1.25, while that from animals

less than 2 mo of age is 1.39.

Stereographic Projection
The analysis is done with the dome of the cornea flattened to

allow the maximum focal plane resolution in confocal microscopy.

When projected back onto a hemisphere the potential for shape

distortion can be seen to be minimal (Figure 9A), as long as the cut

areas are avoided in the analysis. In some cases intact corneas were

analyzed, for example Figure 9B,C,D. In this example the data

clearly show the patches to be fractal. The intact cornea required

photographing with a macro lens due to its size and long exposure

times were required. There was an inherent loss of focus, whereas

sensitive, high resolution imaging by confocal microscopy was

required for accurate determination of the fractal dimension.

Thus, direct comparisons of fractal dimensions between these

imaging methods are not appropriate.

The spiraling pattern seen in the cornea exhibits traits similar to

those of a loxodrome, which is a curve describing a path to a pole

with an invariant non-zero angle to meridians. As a loxodrome

approaches the apex, the path becomes a logarithmic spiral.

Moreover, the stereographic projection of a loxodrome curve is

described by a set of equations to which the data can be fit. In the

case of a sphere the stereographic projection of a loxodrome is a

logarithmic spiral. Comparing edges of the imaged corneas and

projected spirals as seen in Figure 10A,B shows agreement

between the predicted behavior of a loxodrome and the patch

edges. Eighteen patch edges in 6 corneas from 4 chimeras were

analyzed in this way with similar results.

A logarithmic spiral is one in which the distance from the center

of the spiral increases exponentially as one moves along the curve.

Figure 4. Chimeric rat corneas. (A) In young rat chimeras corneas display a geographic pattern reminiscent of islands in the sea, which is
indicative of unconstrained growth of a stem cell like nature shown here from a 3 week-old animal. Areas where the cornea has been cut to relax it
are outlined in blue. (B) This pattern transitions into a highly constrained pinwheel pattern in the adult rat illustrated here in a 16 month-old animal.
(C) This pinwheel pattern is not present in the endothelial layer of the cornea. (D) Endothelial pattern is unrelated to that of the epithelium of the
same cornea. The epithelium shown in (D) also displays several alternate patterns including arcs and branches in the pattern. eGFP lineage is green.
Scale bars = 500 mm.
doi:10.1371/journal.pone.0031609.g004

Visualization and Fractal Analysis of Rat Chimeras

PLoS ONE | www.plosone.org 6 February 2012 | Volume 7 | Issue 2 | e31609



That is, as the angle theta between a line (vector) connecting the

center of the spiral and an arbitrary point along the spiral and the

vector connecting the center to the curve at points further along

the spiral increases, the length of the vector increases exponentially

(Figure 10). In an Archimedean spiral by contrast the length of the

vector increases linearly. Vectors were drawn to arbitrary points

along patch edges; the angle theta and the vector length were

calculated for 24 patches, from five corneas in four chimeras

(Figure 10C). The vector length was plotted against the angle theta

and the data were fit to both an exponential and linear function.

Three representative plots are shown in Figure 10D. The

correlation coefficients for an exponential fit for the 24 patches

Figure 5. Cross sections of chimeric rat corneas. (A) Cross sections of chimeric rat corneas reveal that there is no concordance between patches
of cells labeled in the epithelium and those labeled in the endothelium. (B) Also apparent is the lack of extensive lateral mixing of cells in the
epithelial layer. Cells form mostly contiguous patches through the thickness of the epithelium. Epi. is the epithelium, Str. is the stroma, and End. is the
endothelium. eGFP lineage is green.
doi:10.1371/journal.pone.0031609.g005
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varied from 0.77 to 0.99, and in all cases were greater than the

correlation coefficient for a linear fit. The same procedure was

applied to an ideal logarithmic spiral and an ideal Archimedean

spiral both generated from equations defining the curves. The

correlation coefficients of the exponential fit of the vector lengths

of a logarithmic spiral and the linear fit of the vector lengths of an

Archimedean spiral were in both cases 1.00 (as expected). Thus,

Archimedean and logarithmic spirals can be discriminated by the

relation between vector length and angle.

Discussion

Here we have shown that fluorescent markers can be used to

provide high-resolution images of patches in a variety of tissues.

These patterns are conserved and regulated and can be recon-

structed in rendered three-dimensional images suitable for analysis.

The patterns observed are a reflection of the forces that could give

rise to them; e.g., cell division patterns, cell movement patterns and

cell death. However, computer simulation previously has shown

that the complicated mosaic patterns observed do not strictly

require cell movement, but rather can reflect self organizational

attributes of repetitively applied cell division rules or algorithms, at

least in the liver and adrenal cortex. Patches themselves reflect a

dynamic state of oscillation in size as patches grow clonally and then

fragment followed by renewed patch membership as cells are

pushed back into previous patches. The equilibrium state therefore

represents the output of a dynamical system. A prediction of this

model is that the patch geometry will display fractal characteristics.

In particular, the intriguing pattern of spiral patches observed first in

mice is shown here to be conserved in the rat using a transgenic

marker unrelated to the cornea. This supports the idea that the

pattern observed is due to cell assortment of the two parental

lineages that formed the chimeras and not developmentally

regulated expression of the marker [1,25].

Although mouse chimeric and mosaic transgenic studies have

been fruitful for examining some aspects of corneal epithelial

spiraling, the underlying mechanism remains unclear. Fixed

examinations of mosaic corneas at different times demonstrate a

steady state of randomly dispersed distribution transitions to a

whorl pattern over several weeks [11,26]. Based on discrete

measurements, West and colleagues proposed that spirals result

from ‘‘coherent’’ clonal patches (descendants that remain stuck

Figure 6. Fractal dimension of chimeric rat corneas. Once images of the chimeric rat corneas are turned into binary images, the fractal
dimension is determined from the slope of the regression line of box counting data. The box counting data is collected over several orders of
magnitude in size and regression lines are fitted to log-log plots of the number of boxes counted versus the size of the box. Shown here are the log-
log plots of 19 images from 10 chimeric rats, demonstrating that they are fractal.
doi:10.1371/journal.pone.0031609.g006
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together) emanating from the limbus, which migrate centripetally

[27]. While examinations of mature corneal epithelial cells in vivo

support aspects of this explanation [28], the less common forms

(branching patches, patches that don’t make it to the apex and arc

shaped patches) are more difficult to explain in this way. Another

problem is that measured migration rates are too slow to explain

the speed of emergence of the spiral pattern from the initial

‘‘islands in a sea’’ pattern [27–31]. That is with a measured

migration rate of 17 mm/day [31] and a corneal diameter of 2.3–

2.6 mm [32] migration would take about 2–2.5 mo from the

limbus to the apex, while the pattern changes from patchy to

striped in less than 3 weeks [30]. In the rat the migration at that

speed would take closer to 6 mo, while the transition occurs in less

than 1 mo. Moreover, it is generally held that population pressure

alone cannot explain the cell migration [33]. Additionally, it is

clear that cell divisions generating corneal epithelium are not

restricted to the limbus [34]. This is an area of some controversy

[35] but in individuals with limbal stem cell deficiency normal

cornea with polygonal superficial cells, well-defined wing cells, and

basal cells develop and are maintained [36].

In transgenic animals the marker gene can be silenced

stochastically by as yet poorly understood mechanisms. This

process is likely due to position effects depending on integration

sites. Regardless of the manner by which silencing occurs it can

result in the formation of mosaic pattern on its own [16].

However, such silencing is not a uniform property of transgenic

animals or the same in all tissues and in this study we have selected

a transgenic strain with high levels of uniform marker expression.

Control corneas only show gene silencing in less than 1% of the

areas examined. In chimeras made from this strain the effect of

Figure 7. Development of chimeric rat cornea patterning. The transition to stripes and spirals occurs rapidly around 2 months of age. The
timeline at the top of the figure displays animal ages where the cornea pattern was examined (vertical red lines) over the range of 8 days-old to 18
months-old. Below is an expanded view of the first 6 months following birth with selected representative images of corneal epitehlium to highlight
the rapid transformation of pattern.
doi:10.1371/journal.pone.0031609.g007
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gene silencing on the observed patterns in the cornea is negligible.

We have shown previously that the patterns observed in adrenal

cortex in aggregation rat chimeras and transgenic rat and mouse

that are mosaic because of gene silencing are qualitatively and

quantitatively very similar [10].

Imaging the cornea required sufficient sensitivity to visualize the

fluorescent signal from the eGFP labeled cells along with a high

level of resolution to discriminate cellular details of the patch

edges. In addition a large field of view was needed so that the

whole area of the cornea could be imaged. Confocal imaging was

ideal with both high sensitivity and high resolution. In conjunction

with a computer controlled motorized stage, many fields of view

could be imaged and tiled to cover the entire area of the cornea.

However, confocal microscopy only images a plane of focus in the

specimen and therefore the corneas needed to be flattened. This

was achieved by cutting small, radial incisions along the perimeter

of the cornea to allow it to lay flat with little deformation. The

epithelium, stroma, and endothelium now lay in separate planes of

focus for the entire cornea, making analysis of fluorescent signal

from the different layers a matter of changing the focus of the

microscope. In the intact cornea discriminating fluorescence from

the distinct layers of the cornea becomes increasingly difficult

toward the periphery. A number of other issues of imaging a large

round surface microscopically, including an increasingly steep

angle of incidence for laser illumination are problematic. Thus

precise imaging of the cornea leads to distortion either from

cutting the cornea or from optical distortion in imaging the intact

hemisphere. We chose to flatten the tissue because of the benefit of

allowing the best resolution for the patch edges from the center of

the cornea to the limbus necessary to measure fractal dimension.

By cutting the cornea at the periphery, the displacement of patches

was least at the center of the tissue and of course the cut edges can

be eliminated from analysis. The center is also where a loxodrome

most closely approximates a logarithmic spiral.

Fractal objects are those in which great detail is nested within

detail. As one examines the object at closer distances or at higher

magnification more detail than is predicted from more distant

observation is revealed. It is not merely a matter of resolution but

rather is an inherent property embedded in the object. As one

looks at one part of a fractal it closely resembles all other parts. In

mathematical terms fractals are said to be self-similar and to scale.

If one measures the perimeter, area or volume of a fractal at

different magnifications these measurements will change more

than would be expected from the difference in magnification

[18,37]. Euclidian objects like circles or squares are not fractal.

Examination of these objects at different magnifications show that

measurements of perimeter, area or volume change as predicted

from the change in magnification. Fractal objects are widespread

in nature; examples include rivers and shore lines. Consider the

length of a river or shoreline. It is not an absolute, It depends on

the distance from which the measurement is made. Observing

from an airplane gives a much shorter length than by walking

along in and out among rocks and bays. Previously we established

that mosaic patches in chimeras are fractal [5]. The implication of

this observation is that an iterative and recursive process guided by

cell division might be enough to explain their development. This

was further demonstrated for liver and adrenal patterns by means

of computer simulations [23]. Fractals can be described with a

statistic called the fractal dimension, which is a measure of

geometric complexity in the object [4,38]. In this study we have

used the fractal dimension to quantitatively establish the dynamics

of pattern transition in the corneal epithelial cell assortment. Since

the epithelium is at first patchy with a high fractal dimension one

might conclude the pattern arose from the effects of cell division as

in the liver where a dynamic process of cell division, daughter cell

placement, and bumping of existing cells results in patches that

grow until incursion from neighboring patches of the other lineage

fragments them and then achieves an equilibrium as bumping

pushes patches of like type together again [4]. However, as the

spiral develops the fractal dimension dramatically falls suggesting

that a different process is responsible. In the adrenal gland we have

previously shown that while the fetal patches are island-like, as in

the liver, the transition to the adult pattern of radial cords does not

result in a lower fractal dimension [10].

Fractal analysis is the approach of choice for the characteriza-

tion of patch boundaries for two reasons. Firstly, it provides a

quantitative parameter of the extent of cell population mixing

which is robust to relative proportions of the cell types. This was

shown in chimeric tissues (for example figure 3e in reference [4]) as

well as in computer simulations [23]. Secondly, since the mosaic

patches are dynamic structures that reveal the net result of

iterations of cell death and their replacement at the expense of

other cells, the patches end up becoming geometrically complex

and cannot be systematically characterized by (for example) a

single boundary length or patch area alone as these parameters

depend on the scale of observation (and the latter also on the

original proportion of cell lineages in the tissue, e.g. see figure 2c in

reference [4]). It is this dependence on resolution that requires the

multi-scale characterization that fractal geometry provides.

Spirals are a class of curves whose radius continuously increases.

D’Arcy Thompson in On Growth and Form noted that of the

many types of spirals the two most important are Archimedean

and logarithmic [39]. In an Archimedean spiral the distance

between the center of the spiral and the curve increases linearly as

one proceeds along the curve while in a logarithmic spiral that

distance increases geometrically or exponentially. The latter result

was obtained here for corneal patches.

Natural spirals often take on the geometry of logarithmic spirals

that are self-similar where each curve increases in scale but not

shape. By definition the spirals we see in the rat corneal epithelium

are not logarithmic as many have an inflection where the direction

of rotation changes. However, the curve describing the patch edge

approximates a logarithmic spiral, with simple transformations,

and the radius of the curve increases exponentially for most of the

patch length between the center and the inflection consistent with

a loxodrome. A loxodrome is the most efficient path to the apex of

a hemisphere insofar as the direction of the cell movement does

not change along the path to the apex. While the shortest path to

the apex is straight along a meridian, the loxodrome may emerge

from directional uncertainty, an inability for the assorting cells to

change direction or a perturbation of direction at some point in

the process. One might speculate that since both loxodromes and

Figure 8. Chimeric rat cornea fractal dimension as a function of animal age. Fractal dimensions were measured for 18 out of 20 chimeric
rats spanning ages from 8 days-old to 18 months-old. As the animal ages the cornea pattern shifts from unconstrained geographic to highly
constrained spirals. The fractal dimension decreases as the animal ages. The plots displaying this decrease in complexity are shown in a linear scale
(A) and semi-log scale for age (B). For cases where more than one image was analyzed for the same age, error bars are shown for 61 standard
deviation from the mean. Because the resolution at which the image was collected can have some influence on the measured fractal dimension, data
points are colored based on the original image’s resolution.
doi:10.1371/journal.pone.0031609.g008

Visualization and Fractal Analysis of Rat Chimeras

PLoS ONE | www.plosone.org 11 February 2012 | Volume 7 | Issue 2 | e31609



Figure 9. Projection of cornea patch data onto a hemisphere, and unrelaxed chimera cornea patches are fractal. (A) To ensure that no
gross deformities in patch geometry occurred as a result of relaxing the corneas prior to imaging them, patch edges from the flattened images were
projected back onto a hemisphere. This transformation was done as described in Methods. Edge points were plotted on a hemisphere to show the
results in three dimensions. No abnormalities or anomalies were observed. (B) Prior to being relaxed, a 3.5 month-old chimeric rat cornea was
photographed (eGFP lineage is green) and the stereomicrograph was converted to a binary image (C) where each patch analyzed was assigned a
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straight stripes are seen in the rat cornea that some global force is

responsible for the epithelial cell assortment. The path of a

loxodrome is an explanation of the spiral assortment that does not

require rotation of the tissue during development. Further if some

perturbation of the direction of cellular assortment occurs again

without the ability of the cell to change the direction of movement,

then the pathway traced to the apex is a loxodrome, while if

unperturbed the shortest path to the apex would be straight along

a meridian. If such perturbation were stochastic then there should

be random distribution of patterns and some individuals should

have both clockwise and counter-clockwise spirals as was indeed

observed. The idea of a global force driving the cell assortment is

consistent with the observation that subepithelial nerves tend to

form pinwheel distribution patterns on about the same time scale

as epithelial cell assortment [26,40].

Even though spirals are present in many forms in nature and

have attracted the attention of many investigators, general

principals of their formation are lacking. Energy minimization

attributes of spiral organization may be significant in develop-

mental settings like the cornea where stress and strain have

consequences for function. The cornea may prove to be useful as a

model of how and why these fascinating structures develop.

color. (D) The fractal nature of the corneal patches was determined by examining the relationship of the area and the perimeter of each patch in a
log-log plot. This relates the length of the perimeter of each patch measured at the highest resolution with area. When all the objects have
‘coastlines’ sharing the same fractal dimension, the points approach a line in a log-log plot. Furthermore, the slope of the regression line plot of
log(area) on log(perimeter) is related to the fractal dimension as D = 2/slope.
doi:10.1371/journal.pone.0031609.g009

Figure 10. Rat chimera cornea patch edges fit loxodromal spirals and a comparison with logarithmic spirals. (A) A confocal image of a
chimeric rat cornea was overlaid with spiral curves, shown in bright purple. Lines connecting the points were drawn in to illustrate the full curve. The
white point marks the center of the calculated spirals. The fit of the mathematically generated spiral was performed visually in Excel by adjusting
parameters until an acceptable agreement between the spiral and patch edge points collected was seen. (B) The calculated spiral was plotted along
with the patch edge points to assess the fit. Parameters of the spiral generated in the figure were as follows: a = 0.067, l0 = 21.2, r = 50, xstretch = 0.008,
ystretch = 0.006, xshift = 0.5, and yshift = 20.5. This illustration is representative of fits made for 18 patch edges. (C) The distance from the center of a
logarithmic spiral to the curve increases exponentially as one proceeds along the curve. A spiral patch is shown. A line was drawn from the center of
the spiral to the patch edge at various positions along the patch edge shown in bright purple, and the lengths of these lines (vector lengths) were
determined. (D) The vector length was plotted against the angle (theta) defined to be the change in direction from the innermost point along the
patch edge in radians. Theta is oriented such that it is increasing regardless of the handedness of the spiral. Data from three representative patches
are shown. The data were fit to both an exponential and a linear model, the correlation coefficient (r2) for the logarithmic fit is shown. Linear r2 values
were lower than those of an exponential fit for every case. (E) Correlations were checked for ideal cases of logarithmic and Archimedean spirals
generated from equations defining the curves. The logarithmic spiral fit exponentially and the Archimedean fit linearly; both had r2 values of 1.00 as
expected. Fitting the logarithmic spiral linearly and the Archimedean exponentially yielded much lower values.
doi:10.1371/journal.pone.0031609.g010
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Supporting Information

Figure S1 Three-dimensional reconstruction of chime-
ric liver animation. Liver from a chimeric rat was sectioned at

35 mm and imaged with confocal microscopy. One plane of focus

was used to represent each 35 mm section. These sections were

then stacked and aligned to render a three dimensional model

illustrating the complex interconnected nature of the patches.

Shown here is an animation of the model being rotated. Total area

shown is approximately 4 mm by 4 mm. eGFP lineage is green.

(MP4)

Figure S2 Detailed three-dimensional reconstruction of
chimeric liver animation. A three dimensional rendering of

chimeric rat liver was produced in the same manner as described

in Figure S1 with the exception that sections were imaged at

higher magnification to illustrate the detail of fluorescent patches.

Shown here is an animation of the model being rotated. Total area

shown is 0.35 mm by 0.35 mm. eGFP lineage is green.

(MP4)

Figure S3 Three-dimensional reconstruction of chime-
ric rat adrenal gland animation. Sections of a chimeric rat

adrenal gland were cut at 35 mm and imaged at one focal plane

with confocal microscopy. These images were then stacked and

aligned to construct a three-dimensional rendering. This highlights

the radial cord-like structure of the fluorescent patches in the

adrenal cortex, which are reminiscent of pencils in a cup. Shown

here is an animation of the rendered image being rotated. Total

area shown is approximately 4 mm by 4 mm. eGFP lineage is

green.

(MP4)
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