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9 Open quantum systems: Density matrix

formalism and applications

D. G. Tempel, J. Yuen-Zhou and A. Aspuru-Guzik

9.1 Introduction

In its original formulation, TDDFT addresses the isolated dynamics of elec-
tronic systems evolving unitarily [Runge 1984]. However, there exist many
situations in which the electronic degrees of freedom are not isolated, but
must be treated as a subsystem imbedded in a much larger thermal bath. The
theory of open quantum systems (OQS) deals with precisely this situation,
in which the bath exchanges energy and momentum with the system, but
particle number is typically conserved. Several important examples include
vibrational relaxation of molecules in liquids and solid impurities, coupling
to a photon bath in cavity quantum electrodynamics, photo-absorption of
chromophores in a protein environment, electron-phonon coupling in single-
molecule transport and exciton and energy transfer nanomaterials. Even with
simple system-bath models, describing the reduced dynamics of many corre-
lated electrons is computationally intractable. Therefore, applying TDDFT
to OQS (OQS-TDDFT) offers a practical approach to the many-body open-
systems problem.

The formal development of the theory of OQS begins with the full unitary
dynamics of the coupled system and bath, described by the Von Neumann
equation for the density operator

dρ̂(t)

dt
= −i[Ĥ(t), ρ̂(t)] . (9.1)

Here,
Ĥ(t) = ĤS(t) + αĤSB + ĤB (9.2)

is the full Hamiltonian for the coupled system and bath and

ĤS(t) = −
1

2

N
∑

i=1

∇2
i +

N
∑

i<j

vee(ri, rj) +
∑

i

vext(ri, t) (9.3)

is the Hamiltonian of the electronic system of interest in an external potential
vext(r, t). This potential generally consists of a static external potential due
to the nuclei and an external driving field coupled to the system such as
a laser field. For an interacting electronic system, vee(r, r

′) = 1/|r − r′| is
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the two-body Coulomb repulsion. The system-bath coupling, ĤSB, acts in
the combined Hilbert space of the system and bath and so it couples the
two subsystems. Typically, for a single dissipation channel, the system-bath
coupling is taken to have a bilinear form,

ĤSB = −Ŝ ⊗ B̂ , (9.4)

where B̂ is an operator in the bath Hilbert space which generally couples to

a local one-body operator Ŝ =
[

∑N

i=1 ŝ(p̂i, r̂i)
]

in the system Hilbert space.

Implicit in OQS is a weak interaction between the system and bath, so that
one can treat the system-bath coupling perturbatively by introducing the
small parameter α as in Eq. (9.2). ĤB is the Hamiltonian of the bath, which
will typically consist of a dense set of bosonic modes such as photons or
phonons. The density of states of ĤB determines the structure of reservoir
correlation functions, whose time-scale in turn determines the reduced system
dynamics.

The goal of the theory of open quantum systems is to arrive at a reduced
description of the dynamics of the electronic system alone, by integrating out
the bosonic modes of the bath. In this way, one arrives at the quantum master
equation, which describes the non-unitary evolution of the reduced system
in the presence of its environment. In the next section, we derive the many-
electron quantum master equation and discuss common approximations used
to treat the system-bath interactions. We then formulate the master equation
approach to TDDFT rigorously, by establishing a van Leeuwen construction
for OQS. Next, we turn to a practical Kohn-Sham (KS) scheme for dissipative
real-time dynamics and finally discuss the linear response version of OQS-
TDDFT, giving access to environmentally broadened absorption spectra.

9.2 The generalized quantum master equation

We begin this section by deriving the formally exact many-electron quantum
master equation using the Nakagima-Zwanzig projection operator formalism
[Nakajima 1958, Zwanzig 1960, Zwanzig 2001]. Using projection operators,
the master equation can be systematically derived from first principles start-
ing from the microscopic Hamiltonian in Eq. (9.2) (i.e. without phenomeno-
logical parameters). This is particularly amenable to TDDFT, in which the
electronic degrees of freedom are treated using first principles as well. We will
then discuss the Born-Markov approximation and the widely used Lindblad
master equation [Lindblad 1976].
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9.2.1 Derivation of the quantum master equation using the

Nakagima-Zwanzig projection operator formalism

Our starting point is Eq. (9.1) for the evolution of the full density operator
of the coupled system and bath,

dρ̂(t)

dt
= −i[Ĥ(t), ρ̂(t)] ≡ −iL̆(t)ρ̂(t) , (9.5)

where L̆(t) is the Liouvillian superoperator for the full evolution defined by
Eq. (9.5). It may be separated into a sum of Liouvillian superoperators as

L̆(t) = L̆S(t) + L̆SB + L̆B , (9.6)

where each term acts as a commutator on the density matrix with its respec-
tive part of the Hamiltonian. Our goal is to derive an equation of motion for
the reduced density operator of the electronic system,

ρ̂S(t) = TrB{ρ̂(t)} , (9.7)

defined by tracing the full density operator over the bath degrees of freedom.
To achieve this formally, we introduce the projection superoperators P̆ and
Q̆. The operator P̆ is defined by projecting the full density operator onto a
product of the system density operator with the equilibrium density operator
of the bath,

P̆ ρ̂(t) = ρ̂eq
B ρ̂S(t) . (9.8)

Q̆ = 1 − P̆ projects on the complement space. In this sense, P̆ projects onto
the degrees of freedom of the electronic system we are interested in, while Q̆
projects onto irrelevant degrees of freedom describing the bath dynamics.

Using these projection operators, Eq. (9.5) can be written formally as two
coupled equations:

d

dt
P̆ ρ̂(t) = −iP̆ L̆ρ̂(t) = −iP̆ L̆P̆ ρ̂(t) − iP̆ L̆Q̆ρ̂(t) (9.9a)

d

dt
Q̆ρ̂(t) = −iQ̆L̆ρ̂(t) = −iQ̆L̆P̆ ρ̂(t) − iQ̆L̆Q̆ρ̂(t) . (9.9b)

If Eq. (9.9b) is integrated and substituted into Eq. (9.9a), one obtains

d

dt
P̆ ρ̂(t) = −iP̆ L̆P̆ ρ̂(t)

−

∫ t

0

dτ P̆ L̆e−i
R

t

τ
dτ ′ Q̆L̆(τ ′)Q̆L̆P̆ ρ̂(τ) − iP̆ L̆e−i

R

t

0
dτ Q̆L̆(τ)Q̆ρ̂(0) . (9.10)

By performing a partial trace of both sides of Eq. (9.10) over the bath degrees
of freedom, one arrives at the formally exact quantum master equation

dρ̂S(t)

dt
= −i[ĤS(t), ρ̂S(t)] +

∫ t

0

dt′K̆(t, τ)ρ̂S(τ) +Ξ(t) . (9.11)
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Here,

K̆(t, τ) = TrB

{

P̆ L̆e−i
R

t

τ
dτ ′Q̆L̆(τ ′)Q̆L̆ρ̂eq

B

}

(9.12)

is the memory kernel.

Ξ(t) = TrB

{

−iP̆ L̆e−i
R

t

0
dτQ̆L̆(τ)Q̆ρ̂(0)

}

(9.13)

arises from initial correlations between the system and its environment [Meier
1999]. Equation (9.11) is still formally exact, as ρ̂S(t) yields the exact expec-
tation value of any operator depending on the electronic degrees of freedom.
In practice, approximations to the memory kernel and initial correlation term
are needed.

9.2.2 The Markov approximation

One often invokes the Markov approximation, in which the memory kernel is
local in time and the initial correlations vanish, i.e.

∫ t

0

dt′K̆(t, t′)ρ̂S(t′) = D̆ρ̂S(t) (9.14)

and
Ξ(t) = 0 . (9.15)

The Markov approximation is valid when τS ≫ τB is satisfied, where τS is the
time-scale for the system to relax to thermal equilibrium and τB is the longest
correlation time of the bath [Breuer 2002]. Roughly speaking, the memory
of the bath is neglected because the bath decorrelates from itself before the
system has had a chance to evolve appreciably [Van Kampen 1992]. The time-
scale τS is inversely related to the magnitude of the system-bath coupling, and
so a weak interaction between the electrons and the environment is implicit in
this condition as well. The Lindblad form of the Markovian master equation,

D̆ρ̂S(t) = Ŝρ̂S(t)Ŝ† −
1

2
Ŝ†Ŝρ̂S(t) −

1

2
ρ̂S(t)Ŝ

†Ŝ , (9.16)

is constructed to guarantee positivity of the density matrix. This is desirable,
since the populations of any physically sensible density matrix should remain
positive during the evolution. In the Lindblad equation, in addition to the
Markov approximation, one performs second-order perturbation theory in the
system-bath interaction [Eq. (9.4)]. These two approximations in tandem are
referred to collectively as the Born-Markov approximation.

So far our discussion has focused on a system of interacting electrons
coupled to a bath. We now turn to the formulation of OQS-TDDFT.
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9.3 Rigorous foundations of OQS-TDDFT

In order to formally establish an OQS-TDDFT starting from the many-body
quantum master equation in Eq. (9.11), we must first establish the open-
systems version of the van Leeuwen construction [van Leeuwen 1999]. This
proves a one-to-one mapping between densities and potentials for non-unitary
dynamics, as well as the existence of several different KS schemes [Yuen-
Zhou 2010, Yuen-Zhou 2009].

9.3.1 The OQS-TDDFT van Leeuwen construction

Our starting point is the master equation of Eq. (9.11), which evolves under
the many-electron Hamiltonian in Eq. (9.3). We may now state a theorem
concerning the construction of an auxiliary system.

Theorem: Let the original system be described by the density matrix ρ̂S(t),
which starting as ρ̂S(0) evolves according to Eq. (9.11). Consider an auxiliary
system associated with the density matrix ρ̂′S(t) and initial state ρ̂′S(0), which
is governed by the master equation

dρ̂′S(t)

dt
= −i[Ĥ ′

S(t), ρ̂
′
S(t′)] +

∫ t

0

dt′K̆ ′(t, t′)ρ̂′S(t′) +Ξ ′(t) (9.17)

and with the functional forms of K̆ ′(t, t′) and Ξ ′(t) given. Here,

Ĥ ′
S(t) = −

1

2

N
∑

i=1

∇2
i +

N
∑

i<j

v′ee(ri, rj) +
∑

i

v′ext(ri, t) , (9.18)

is the Hamiltonian of an auxiliary system with a different two-particle in-
teraction v′ee(r, r

′) which is also given. Under mild conditions, there exists
an external potential v′ext(r, t) which drives the system in such a way that
the particle densities in the original and the auxiliary systems are the same,
i.e. 〈n̂(r)〉′ = 〈n̂(r)〉. This implies that Tr{ρ̂S(t)n̂(r)} = Tr{ρ̂′S(t)n̂(r)} is
satisfied for all times.

Proof : The method we use closely parallels the van Leeuwen construction
given for unitary evolution [van Leeuwen 1999]. By using Eq. (9.11) we can
find an equation of motion for the second derivative of the particle density
of the original system. This is done by first deriving the equation of motion
for the particle density

∂〈n̂(r)〉t
∂t

= −∇ · 〈ĵ(r)〉t + Tr

{

n̂(r)

[
∫ t

0

dt′K̆(t, t′)ρ̂S(t′) +Ξ(t)

]}

, (9.19)
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as well as for the current density,

∂〈ĵ(r)〉t
∂t

= −
〈n̂(r)〉t
m

∇vext(r, t) + D(r, t) +
F(r, t)

m
+ G(r, t) . (9.20)

We then differentiate both sides of Eq. (9.19) with respect to time and use
Eq. (9.20) to eliminate the current. One thus arrives at,

∂2〈n̂(r)〉t
∂t2

= ∇ · {〈n̂(r)〉t∇vext(r, t)/m}

+ D(r, t) + F(r, t)/m+ G(r, t)} + J (r, t) , (9.21)

subject to the initial conditions

〈n̂(r)〉′t=0 = 〈n̂(r)〉t=0, (9.22a)

∂〈n̂(r)〉′t
∂t

∣

∣

∣

∣

t=0

=
∂〈n̂(r)〉t

∂t

∣

∣

∣

∣

t=0

. (9.22b)

i.e. we demand that the densities and their first derivatives be the same at
the initial time. In Eq. (9.21), each term has a clear physical interpretation.
The quantity ∇vext(r, t) is proportional to the external electric field acting
on the system,

D(r, t) = −
1

4

∑

α,β

β̂
∂

∂α
〈
∑

i

{v̂iα, {v̂iβ , δ(r − r̂i)}}〉 (9.23)

is the divergence of the stress tensor, where α, β = x, y, z label Cartesian
indices, and

F(r, t) = −〈
∑

i

δ(r − r̂i)
∑

j 6=i

∇ri
vee(ri − rj)〉 (9.24)

is the internal force density caused by the pairwise potential. In addition
to these quantities which arise in usual TDDFT, we have defined two new
quantities,

G(r, t) = Tr

{

ĵ(r)

[
∫ t

0

dt′K̆(t, t′)ρ̂S(t′) +Ξ(t)

]}

(9.25a)

J (r, t) =
∂

∂t
Tr

{

n̂(r)

[
∫ t

0

dt′K̆(t, t′)ρ̂S(t′) +Ξ(t)

]}

, (9.25b)

which are unique to OQS-TDDFT and arise from forces induced by the bath.
We can now repeat the same procedure in the primed system, to arrive

at the equation of motion for the second derivative of the density in terms of
primed quantities,

∂2〈n̂(r)〉′t
∂t2

= ∇ · {〈n̂(r)〉′t∇v
′
ext(r, t)/m}

+ D
′(r, t) + F

′(r, t)/m+ G
′(r, t)} + J ′(r, t) . (9.26)
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If we subtract Eq. (9.21) from Eq. (9.26) and assume that 〈n̂(r)〉′t = 〈n̂(r)〉t,
we arrive at the equation

−∇·[
〈n̂(r)〉t
m

∇(∆v′ext(r, t))] = −∇·[D′(r, t)+
F ′(r, t)

m
+G

′(r, t)]+J ′(r, t)

+ ∇ · [D(r, t) +
F(r, t)

m
+ G(r, t)] − J (r, t) , (9.27)

where we have defined ∆vext(r, t) ≡ v′ext(r, t) − vext(r, t). We now expand
both sides of Eq. (9.27) in a Taylor series with respect to time to arrive at

−∇ · [nGS(r)∇v′ext l(r)] = ∇ · [nGS(r)∇vext l(r)]

−∇ · [mD
′
l(r) + F

′
l(r) +mG

′
l(r)] +mJ ′

l (r, t)

+ ∇ · [mDl(r) + F l(r) +mGl(r)] −mJ l(r, t)

+ ∇ ·

l
∑

k=1

nk(r)∇ [∆vext l−k(r)] . (9.28)

The left-hand side of Eq. (9.28) contains Taylor coefficients of v′ext(r, t) of or-
der l, while the right-hand side depends only on Taylor coefficients of v′ext(r, t)
of order k < l and known quantities. Equation (9.28) can therefore be re-
garded as a unique recursion relation for constructing the Taylor coefficients
of the auxiliary potential v′ext(r, t), once a suitable boundary condition is
specified. We assume that v′ext l(r) → 0 sufficiently quickly as |r| → ∞ for
all l.

Several different KS schemes are now evident. If one sets v′ee(r, r
′) = 0,

but keeps the system open by setting K̆ ′(t) = K̆KS(t) andΞ ′(t) = ΞKS(t), the
auxiliary system is a non-interacting, but open KS system. This is similar to
the construction used in [Burke 2005c], but encompasses the non-Markovian
case as well. However, one may also choose v′ee(r, r

′) = 0 and K̆ ′(t) = Ξ ′(t) =
0, whereby the density of the original open system is reproduced with a closed

(unitarily evolving) and non-interacting KS system.

9.3.2 The double adiabatic connection

The content of our proof is conveniently summarized by parametrizing the
auxiliary system’s master equation with two coupling constants λ and β as,

d

dt
ρ̂′S(λ, β, t) = −i[Ĥ ′

S(λ, β, t), ρ̂
′
S(λ, β, t)]+

β
{

∫ t

0

dτ K̆ ′(t, τ ;λ)ρ̂′S(λ, β, τ) +Ξ ′(t;λ)
}

, (9.29)

where

Ĥ ′
S(λ, β, t) = −

1

2

N
∑

i=1

∇2
i + λ

N
∑

i<j

vee(ri, rj) +
∑

i

v′ext(λ, β, ri, t) . (9.30)
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Here, λ scales the electron-electron interaction and lies in the range 0 6 λ 6 1.
When λ = 1, we have a fully interacting system, while when λ = 0 we
have a system of non-interacting electrons. The memory kernel and initial
correlations are functions of λ as well. Similarly, β scales the non-unitary
terms in the master equation and lies in the range 0 6 β 6 1. When β = 1,
we have a fully open system while when β = 0 the system evolves unitarily.

The theorem of Sect. 9.3.1 guarantees the existence and uniqueness of a
potential v′ext(λ, β, r, t) for all λ and β, which drives the auxiliary system in
such a way that the true density is obtained independent of the values of λ and
β. This can be viewed as a two-dimensional extension of the usual electron-
electron adiabatic connection in closed-systems TDDFT [Görling 1997]. It is
depicted graphically in Fig. 9.1. At the coordinate (1,1), we have the original
fully interacting and open system, while at the coordinate (0,0) we have the
non-interacting and closed KS scheme. Defining K̆ ′(λ = 0) ≡ K̆KS(t) and
Ξ ′(λ = 0) ≡ ΞKS as the memory kernel and initial correlations of an open
system of non-interacting electrons, we see that the point (1,0) describes the
open KS scheme. In the remainder of the chapter, we will focus on the points
(0,0) and (1,0). However, our proof shows that any coordinate lying within
the double adiabatic connection square represents a viable KS scheme. As in
DFT and TDDFT, the double adiabatic connection provides a powerful tool
for deriving exact conditions on OQS-TDDFT functionals and is currently
being explored in more detail.

9.4 Simulating real-time dissipative dynamics with a

unitarily evolving Kohn-Sham system

In the previous section, we saw that it is possible to take the KS system to be
a non-interacting system evolving unitarily under a time-dependent driving
field that will reproduce the particle density of the original interacting OQS.
In this scheme, the KS scalar potential v′ext can be expressed as a sum of
several contributions:

v′ext = vext + vH + vxc + vbath . (9.31)

Here, vext is the same external potential as the one acting on the real system
(electron-nuclei and possibly an external perturbation, such as a laser field).
The electron-electron interaction is replaced by the sum of a Hartree term

vH =

∫

d3r′
〈n̂(r′)〉t
|r − r′|

(9.32)

and a standard approximation to the exchange-correlation (xc) term vxc, such
as an adiabatic functional [Furche 2002a]. Finally, vbath is a new term which
represents a driving field that mimics the interactions of the system with the
bath. This KS scheme places electron-electron and system-bath interactions
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Fig. 9.1. The relevant points on the double adiabatic connection square are: (1,1):
The original interacting OQS; (1,0): The non-interacting yet open Kohn-Sham
scheme; (0,0): The non-interacting and closed Kohn-Sham scheme.

on the same footing, so real-time TDDFT computer codes could in principle
be easily modified to include the dissipative effects of an environment [Castro
2006]. Furthermore, by propagating orbitals instead of a density matrix as
in an open Kohn-Sham scheme, the scaling of the computational time with
system size is the same as for a standard closed-system propagation.

It is therefore our goal to suggest practical, yet reasonably accurate ap-
proximations to vbath. Before proceeding along this direction, our goal de-
serves two comments: First, it goes in line with the spirit of standard real-time
TDDFT, where the many-body Hamiltonian of the original system is replaced
by a KS Hamiltonian which, although non-interacting, is a functional of the
particle density, and therefore is propagated as a nonlinear Schrodinger equa-
tion. Second, equations of motion for classical systems coupled to heat baths
are often described by Langevin equations, where frictional forces are func-
tions of the velocity of the particle itself (Stokes law) [Zwanzig 2001], making
their numerical propagation nonlinearly dependent on system variables such
as the current and density. Therefore, the search for approximations to vbath

could start by investigating work already done in the field of dissipative non-
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linear Schrödinger equations (NLSE) [Kostin 1972, Kostin 1975, Bolivar 1998,
Haas 2010], as well as of time-dependent self consistent field (TD-SCF) meth-
ods [Makri 1987, López 2010, Martinazzo 2006]. In this section, we describe a
simple Markovian bath functional inspired by the NLSE suggested by Kostin
[Kostin 1972].

Consider a single particle in one dimension whose evolution is given by
the NLSE,

i
∂ψ

∂t
= Hψ , (9.33)

where

H =
p2

2m
+ vext + vbath , (9.34)

and p and vext are the momentum of the particle and the external potential,
respectively, and the dissipative potential is given by

vbath(z, t) =
λ

2i
ln

[

ψ(z, t)

ψ∗(z, t)

]

. (9.35)

As can be easily verified, this NLSE has the very interesting property that
it satisfies the Langevin equation at zero temperature for the expectation
values of observables:

〈ż〉 =
〈p〉

M
, (9.36)

〈ṗ〉 = −

〈

∂vext(z, t)

∂z

〉

− λ〈p〉 . (9.37)

Interestingly, vbath can be written as a functional of the particle density,

vbath[〈n̂(z′)〉t, 〈ĵ(z
′)〉t] = λ

∫ z

−∞
dz′

〈ĵ(z′)〉t
〈n̂(z′)〉t

. (9.38)

This identification is very appealing, since the frictional force is proportional
to the space integral of the velocity field of the particle, 〈ĵ(z′)〉t/〈n̂(z′)〉t.
Furthermore, the friction coefficient λ can be derived from a microscopic
model of harmonic bath modes [Zwanzig 2001, Nitzan 2006, Tuckerman 2010].
Note that vbath at a given time only depends on the momentum of the particle
at the same instant, implying that this NLSE is Markovian. This situation
can be obtained in the limit where the dynamics of the bath can be described
as white noise [Peskin 1998].

Although the discussion above has been given for a single-particle, we
heuristically propose Eq. (9.38) as a Markovian bath functional for TDDFT.
In practice, we can re-express vbath in terms of the orbitals of a time-dependent
single Slater determinant KS wavefunction, ΦKS(t) = 1√

N !
det[ϕi(zj , t)]:

vbath(z, t) = λ

∫ z

−∞
dz′

∑

i |ϕi(z
′, t)|2∇αi(z

′, t)
∑

i |ϕi(z′, t)|2
. (9.39)
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The extension of the functional to more dimensions follows analogously, al-
though the limits of integration must be studied with care. Equation (9.39)
is easy to implement in a real-time propagation, and has been implemented
for a model Helium system interacting with a heat bath [Yuen-Zhou 2010].
Non-Markovian extensions, as well as functionals where several timescales of
relaxation and dephasing exist, are currently under development.

With slightly different motivations, Neuhauser and Lopata [Neuhauser
2008] have recently reported an important result which could also be con-
sidered a Markovian bath functional in our formalism. Their functional is
inspired by an optimal control approach, where they demand that the energy
in the KS system decays monotonically. They show that

vbath[〈ĵ(z′)〉t] =

∫

dz′ a(z′)
∂〈ĵ(z′)〉t

∂t
ĵ(z) (9.40)

achieves such goal. This functional couples the average current-density to the
current operator with a spatially dependent proportionality constant a(z′).
Their studies of a jellium cluster also show numerical robustness to provide
dissipation in a real-time KS calculation. The merits and disadvantages of
(9.38) and (9.40) shall be investigated in detail in the future.

9.5 OQS-TDDFT in the linear response regime using

the open Kohn-Sham scheme

In addition to real-time dynamics, one can also consider OQS-TDDFT in
the linear response regime, which gives access to environmentally broadened
spectra [Tempel 2011a]. The starting point is the density-density response
function of an interacting OQS evolving according to Eq. (9.11):

χ(r, r′;ω) = TrS

{

n̂(r)
1

ω + L̆S − iK̆(ω)
[ρ̂n

S(r′, 0) +Ξ(ω)]

}

, (9.41)

where
ρ̂n
S(r, 0) = TrR

{

[n̂(r), ρ̂eq]
}

(9.42)

is the commutator of the particle density operator with the full equilibrium
density matrix of the combined system and reservoir. From Eq. (9.41), one
sees that the primary effect of the bath is to introduce a frequency-dependent
self-energy K̆(ω), which shifts the poles of the response function into the
complex plane. In the absence of coupling to the bath, the poles of Eq. (9.41)
would lie at the excitation frequencies of the isolated system, which are the
eigenvalues of L̆S. The real part of K̆(ω) can be interpreted as an excited-state
lifetime while the imaginary part is a Lamb shift of the energy.

In order to access the poles of the many-body response function in Eq. (9.41),
one introduces an auxiliary open, but non-interacting KS system with a
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density-density response function given by

χKS(r, r′, ω) = TrS

{

n̂(r)
1

ω + L̆KS − iK̆KS(ω)
([n̂(r′), ρ̂KS

S (0)] +ΞKS(ω))

}

.

(9.43)
Here, L̆KS is the Liouvillian for the ground or equilibrium-state Kohn-Sham-
Mermin Hamiltonian [Kohn 1965] and ρ̂KS

S (0) is the corresponding KS den-

sity matrix. K̆KS(ω) is a KS self-energy which describes coupling of non-
interacting electrons to the environment. It is chosen to be a one-body su-
peroperator and easily constructed in terms of KS orbitals and eigenvalues
of L̆ks. As mentioned in Sect. 9.3, the existence and uniqueness of such a KS
system is guaranteed by setting K̆ ′ = K̆KS, Ξ ′ = ΞKS and v′ee(r, r

′) = 0 in
the proof. For this scheme, we partition the potential as

v′ext = vext + vH + vopen
xc , (9.44)

where vopen
xc not only accounts for electron-electron interaction within the

system, but must also correct for the difference between K̆KS and K̆ in the
system-bath interaction. This scheme is better suited to response theory than
the closed Kohn-Sham scheme discussed in Sect. 9.4, since relaxation and
dephasing is already accounted for in the KS system through K̆KS. The un-
known (OQS-TDDFT) exchange-correlation functional only needs to correct
the relaxation and dephasing in the KS system to that of the interacting
system, rather than needing to explicitly account for the entire effect of the
environment. However, the closed KS scheme is better suited for real-time
dynamics, since one only needs to propagate a set of equations for the KS
orbitals as in usual TDDFT.

Reminiscent of usual TDDFT, Eq. (9.41) and Eq. (9.43) are related by
the Dyson-like equation

χ(r, r′, ω) = χKS(r, r′, ω)+
∫

d3y

∫

d3y′ χKS(r,y, ω)

{

1

|y − y′|
+ fopen

xc [neq, K̆, K̆KS](y,y′, ω)

}

× χ(y′, r′, ω) , (9.45)

where

fopen
xc [neq, K̆, K̆KS](y,y′, ω) =

δvopen
xc (r, ω)

δn(r′, ω)

∣

∣

∣

∣

n=neq

(9.46)

is the OQS-TDDFT exchange correlation kernel. It is a functional of the
equilibrium density as well as the memory kernel in both the interacting and
Kohn-Sham systems. For Markovian environments, it is straightforward to
reformulate Eq. (9.45) as a Casida-type equation [Casida 1996],

{

ω2 − Ω̄(ω)
}

F = 0 , (9.47)
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where the frequency-dependent operator Ω̄(ω) can be expressed in a basis of
Kohn-Sham-Mermin orbitals as

Ω̄ijkl(ω) = δikδjl

{

(ωKS
lk +∆KS

kl )2 + (ΓKS
kl )2 − 2iωΓKS

kl

}

+ 4
√

(fi − fj)(ωKS
ji +∆KS

ij )Kijkl(ω)
√

(fk − fl)(ωKS
lk +∆KS

kl ) . (9.48)

Here, ΓKS
kl and ∆KS

kl arise from matrix elements of the real and imaginary

parts of K̆KS respectively.

Kijkl(ω) =

∫

d3r

∫

d3r′ ϕ∗
i (r)ϕ∗

j (r)

×

{

1

|r − r′|
+ fopen

xc [neq, K̆, K̆KS](r, r′, ω)

}

ϕk(r′)ϕl(r
′) (9.49)

are matrix elements of the OQS Hartree-exchange-correlation kernel. Equa-
tion (9.48) is a non-hermitian and explicitly frequency-dependent operator
yielding complex eigenvalues. The real part of the eigenvalues are interpreted
as excitation energies while the imaginary parts give the linewidths. Since the
KS system is open, the bare KS spectrum is already broadened at zeroth-
order. fopen

xc has the task of not only shifting the location of the bare KS
absorption peaks to that of the interacting system, but it must also correct
the linewidths.

As a simple example, we solved the OQS Casida equations in Eq. (9.47)
to obtain the absorption spectrum of a C2+ cation interacting with the
modes of the electromagnetic field in vacuum, giving rise to radiative natural
linewidths. The electromagnetic field acts as a photon bath, while the C2+

cation can be treated as an OQS in our formalism [Cohen-Tannoudji 2004].
As a crude first approximation, we used an adiabatic functional (ATDDFT)
for fopen

xc in Eq. (9.48), and solved Eq. (9.47) for the 3 lowest dipole al-
lowed transitions (2s→ 2p, 3p, 4p). From Fig. (9.2), we see that the adiabatic
functional places the location of the absorption peaks in essentially the cor-
rect place as in usual TDDFT, but leaves the linewidths unchanged relative
to their bare KS value. To correct the linewidths, one needs a frequency-
dependent bath functional yielding additional broadening. Such a functional
with the correct frequency-dependence to first-order in Görling-Levy pertur-
bation theory [Görling 1993, Görling 1998a] was discussed in [Tempel 2011a]
for the 2s → 2p transition. The frequency-dependent kernel matrix element
in Eq. (9.49) was found to be

Kbath
2s2p,2s2p(ω) = −

i

2(ε2s − ε2p)
(ω + iΓKS

2p,2s)(Γ
1
2p,2s) , (9.50)

where ΓKS
2p,2s is the bare KS linewidth and Γ 1

2p,2s is a correction derived from
first-order Görling-Levy perturbation theory. In Fig. 9.3, we see that including
Eq. (9.50) when solving the OQS Casida equations yields a large correction to
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Fig. 9.2. Absorption Spectrum of C2+ including the 3 lowest dipole allowed transi-
tions. The curves shown are: (a) The bare Kohn-Sham spectrum. (b) The spectrum
obtained by solving Eq. (9.47) with an adiabatic exchange-correlation kernel. (c)
The numerically exact spectrum obtained using experimental data. For visualiza-
tion, all linewidths have been scaled by a factor of c

3 since the radiative lifetime in
vacuum is extremely small.

the linewidth, although the oscillator strength is unchanged. To correct the
oscillator strength as well, one needs higher-order corrections. A similar for-
malism can be used to capture line broadening due to vibrational relaxation
in molecules and electron-phonon scattering and is currently being explored.

9.6 Conclusions and outlook

We have discussed the formal foundations of OQS-TDDFT in the density
matrix representation starting from a many-electron quantum master equa-
tion and established a van Leeuwen construction which allows for a variety
of different Kohn-Sham schemes.

The first scheme we discussed uses a non-interacting and closed (uni-
tarily evolving) Kohn-Sham system to reproduce the dynamics of an in-
teracting OQS. With suitable functionals, this scheme is remarkably use-
ful for dissipative real-time dynamics, since it can be easily implemented
in existing real-time codes. We presented the simple yet practical Marko-
vian bath functional, which has shown promising results for a model He-
lium system [Yuen-Zhou 2010]. Future research will focus on understanding
exact conditions with the goal of developing more sophisticated function-
als. In [Tempel 2011a], a systematic study of the exact OQS-TDDFT func-
tional was carried out for a one-electron model OQS. The exact functional
was shown to have memory dependence [Maitra 2001] and share some fea-
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Fig. 9.3. The curves shown are: (a) The correction to the bare Kohn-Sham
linewidth using the frequency-dependent bath functional to first-order in GL pertur-
bation theory [Eq. (9.50)]. (green). (b) The spectrum obtained by solving Eq. (9.47)
with an adiabatic exchange-correlation kernel (blue-dashed). (c) The numerically
exact spectrum obtained using experimental data (red-dashed). All linewidths are
scaled by a factor of c

3

tures with existing dissipation functionals in time-dependent current DFT
(TDCDFT) [Vignale 1996, Vignale 1997, Ullrich 2002b]. However, in OQS-
TDDFT dissipation arises from coupling to a dense bosonic bath, which dif-
fers from TDCDFT where dissipation arises as an intrinsic feature of the
interacting electron liquid.

The second scheme we discussed uses an open KS system to calculate
broadened absorption spectra in linear response TDDFT. By using an open
KS system, the bare KS spectrum is already broadened, while the OQS-
TDDFT exchange-correlation kernel generates additional line broadening and
shifts. The development of more sophisticated frequency-dependent function-
als to capture additional broadening and asymmetric lineshapes due to non-
Markovian effects is currently being explored as well.

In the next chapter, an alternative formulation of OQS-TDDFT based on
stochastic wavefunctions rather than density matrices will be presented.


