78 research outputs found

    Indoor optical fiber eavesdropping approach and its avoidance

    Full text link
    The optical fiber network has become a worldwide infrastructure. In addition to the basic functions in telecommunication, its sensing ability has attracted more and more attention. In this paper, we discuss the risk of household fiber being used for eavesdropping and demonstrate its performance in the lab. Using a 3-meter tail fiber in front of the household optical modem, voices of normal human speech can be eavesdropped by a laser interferometer and recovered 1.1 km away. The detection distance limit and system noise are analyzed quantitatively. We also give some practical ways to prevent eavesdropping through household fiber.Comment: 8 pages, 4 figures, submitted to Optics Expres

    Acoustic Analysis of Multi-Frequency Problems Using the Boundary Element Method Based on Taylor Expansion

    Get PDF
    This work proposes a refreshing technique that utilizes the Taylor expansion to improve the computational efficiency of the multi-frequency acoustic scattering problem. The Helmholtz equation in acoustic problems is solved using the boundary element method (BEM). In this work, the Taylor expansion is utilized to separate frequency-dependent terms from the integrand function in the boundary integral equation so that the wave number is independent of the equation system, thereby avoiding the time-consuming frequency sweep analysis. To conquer the non-uniqueness of the solution for the external acoustic field problem, the Burton-Miller method is used to linearly combine the conventional boundary integral equation and the hypersingular boundary integral equation. Moreover, to eliminate the computational difficulties caused by the Burton-Miller method, the Cauchy principal value and the Hadamard finite part integral method are used to solve singular integrals. Two-dimensional numerical examples are exploited to verify the effectiveness and compatibility of the algorithm for the multi-frequency analysis

    Quantifying the controls on evapotranspiration partitioning in the highest alpine meadow ecosystem

    Get PDF
    Quantifying the transpiration fraction of evapotranspiration (T/ET) is crucial for understanding plant functionality in ecosystem water cycles, land‐atmosphere interactions, and the global water budget. However, the controls and mechanisms underlying the temporal change of T/ET remain poorly understood in arid and semiarid areas, especially for remote regions with sparse observations such as the Tibetan Plateau (TP). In this study, we used combined high‐frequency laser spectroscopy and chamber methods to constrain estimates of T/ET for an alpine meadow ecosystem in the central TP. The three isotopic end members in ET (δET), soil evaporation (δE), and plant transpiration (δT) were directly determined by three newly customized chambers. Results showed that the seasonal variations of δET, δE, and δT were strongly affected by the precipitation isotope (R2 = 0.53). The δ18O‐based T/ET agreed with that of δ2H. Isotope‐based T/ET ranged from 0.15 to 0.73 during the periods of observation, with an average of 0.43. This mean result was supported by T/ET derived from a two‐source model and eddy covariance observations. Our overarching finding is that at the seasonal timescale, surface soil water content (θ) dominated the change of T/ET, with leaf area index playing only a secondary role. Our study confirms the critical impact of soil water on the temporal change of T/ET in water‐limited regions such as the TP. This knowledge sheds light on diverse land‐surface processes, global hydrological cycles, and their modeling

    Intranasal Delivery of Cationic PLGA Nano/Microparticles- Loaded FMDV DNA Vaccine Encoding IL-6 Elicited Protective Immunity against FMDV Challenge

    Get PDF
    Mucosal vaccination has been demonstrated to be an effective means of eliciting protective immunity against aerosol infections of foot and mouth disease virus (FMDV) and various approaches have been used to improve mucosal response to this pathogen. In this study, cationic PLGA (poly(lactide-co-glycolide)) nano/microparticles were used as an intranasal delivery vehicle as a means administering FMDV DNA vaccine encoding the FMDV capsid protein and the bovine IL-6 gene as a means of enhancing mucosal and systemic immune responses in animals. Three eukaryotic expression plasmids with or without bovine IL-6 gene (pc-P12A3C, pc-IL2AP12A3C and pc-P12AIL3C) were generated. The two latter plasmids were designed with the IL-6 gene located either before or between the P12A and 3C genes, respectively, as a means of determining if the location of the IL-6 gene affected capsid assembly and the subsequent immune response. Guinea pigs and rats were intranasally vaccinated with the respective chitosan-coated PLGA nano/microparticles-loaded FMDV DNA vaccine formulations. Animals immunized with pc-P12AIL3C (followed by animals vaccinated with pc-P12A3C and pc-IL2AP12A3C) developed the highest levels of antigen-specific serum IgG and IgA antibody responses and the highest levels of sIgA (secretory IgA) present in mucosal tissues. However, the highest levels of neutralizing antibodies were generated in pc-IL2AP12A3C-immunized animals (followed by pc-P12AIL3C- and then in pc-P12A3C-immunized animals). pc-IL2AP12A3C-immunized animals also developed stronger cell mediated immune responses (followed by pc-P12AIL3C- and pc-P12A3C-immunized animals) as evidenced by antigen-specific T-cell proliferation and expression levels of IFN-γ by both CD4+ and CD8+ splenic T cells. The percentage of animals protected against FMDV challenge following immunizations with pc-IL2AP12A3C, pc-P12AIL3C or pc-P12A3C were 3/5, 1/5 and 0/5, respectively. These data suggested that intranasal delivery of cationic PLGA nano/microparticles loaded with various FMDV DNA vaccine formulations encoding IL-6 as a molecular adjuvant enhanced protective immunity against FMDV, particularly pc-IL2AP12A3C with IL-6 gene located before P12A3C gene

    Revisiting the contribution of transpiration to global terrestrial evapotranspiration

    Get PDF
    Even though knowing the contributions of transpiration (T), soil and open water evaporation (E), and interception (I) to terrestrial evapotranspiration (ET=T+E+I) is crucial for understanding the hydrological cycle and its connection to ecological processes, the fraction of T is unattainable by traditional measurement techniques over large scales. Previously reported global mean T/(E+T+I) from multiple independent sources, including satellite-based estimations, reanalysis, land surface models, and isotopic measurements, varies substantially from 24% to 90%. Here we develop a new ET partitioning algorithm, which combines global evapotranspiration estimates and relationships between leaf area index (LAI) and T/(E+T) for different vegetation types, to upscale a wide range of published site-scale measurements. We show that transpiration accounts for about 57.2% (with standard deviation6.8%) of global terrestrial ET. Our approach bridges the scale gap between site measurements and global model simulations,and can be simply implemented into current global climate models to improve biological CO2 flux simulations

    Efficacy and safety of histone deacetylase inhibitors in peripheral T-cell lymphoma: a systematic review and meta-analysis on prospective clinical trials

    Get PDF
    BackgroundThe overall survival of peripheral T-cell lymphoma (PTCL) is dismal. Histone deacetylase (HDAC) inhibitors have exhibited promising treatment outcomes for PTCL patients. Therefore, this work aims to systematically evaluate the treatment outcome and safety profile of HDAC inhibitor-based treatment for untreated and relapsed/refractory (R/R) PTCL patients.MethodsThe prospective clinical trials of HDAC inhibitors for the treatment of PTCL were searched on the Web of Science, PubMed, Embase, ClinicalTrials.gov, and Cochrane Library database. The pooled overall response rate, complete response (CR) rate, and partial response rate were measured. The risk of adverse events was evaluated. Moreover, the subgroup analysis was utilized to assess the efficacy among different HDAC inhibitors and efficacy in different PTCL subtypes.ResultsFor untreated PTCL, 502 patients in seven studies were involved, and the pooled CR rate was 44% (95% CI, 39-48%). For R/R PTCL patients, there were 16 studies included, and the CR rate was 14% (95% CI, 11-16%). The HDAC inhibitor-based combination therapy exhibited better efficacy when compared with HDAC inhibitor monotherapy for R/R PTCL patients (P = 0.02). In addition, the pooled CR rate was 17% (95% CI, 13-22%), 10% (95% CI, 5-15%), and 10% (95% CI, 5-15%) in the romidepsin, belinostat, and chidamide monotherapy subgroups, respectively. In the R/R angioimmunoblastic T-cell lymphoma subgroup, the pooled ORR was 44% (95% CI, 35-53%), higher than other subtypes. A total of 18 studies were involved in the safety assessment of treatment-related adverse events. Thrombocytopenia and nausea were the most common hematological and non-hematological adverse events, respectively.ConclusionThis meta-analysis demonstrated that HDAC inhibitors were effective treatment options for untreated and R/R PTCL patients. The combination of HDAC inhibitor and chemotherapy exhibited superior efficacy to HDAC inhibitor monotherapy in the R/R PTCL setting. Additionally, HDAC inhibitor-based therapy had higher efficacy in angioimmunoblastic T-cell lymphoma patients than that in other subtypes

    Evolutionary Analysis of Structural Protein Gene VP1 of Foot-and-Mouth Disease Virus Serotype Asia 1

    Get PDF
    Foot-and-mouth disease virus (FMDV) serotype Asia 1 was mostly endemic in Asia and then was responsible for economically important viral disease of cloven-hoofed animals, but the study on its selection and evolutionary process is comparatively rare. In this study, we characterized 377 isolates from Asia collected up until 2012, including four vaccine strains. Maximum likelihood analysis suggested that the strains circulating in Asia were classified into 8 different groups (groups I–VIII) or were unclassified (viruses collected before 2000). On the basis of divergence time analyses, we infer that the TMRCA of Asia 1 virus existed approximately 86.29 years ago. The result suggested that the virus had a high mutation rate (5.745 × 10−3 substitutions/site/year) in comparison to the other serotypes of FMDV VP1 gene. Furthermore, the structural protein VP1 was under lower selection pressure and the positive selection occurred at many sites, and four codons (positions 141, 146, 151, and 169) were located in known critical antigenic residues. The remaining sites were not located in known functional regions and were moderately conserved, and the reason for supporting all sites under positive selection remains to be elucidated because the power of these analyses was largely unknown

    Nitrated α-Synuclein Induces the Loss of Dopaminergic Neurons in the Substantia Nigra of Rats

    Get PDF
    BACKGROUND: The pathology of Parkinson's disease (PD) is characterized by the degeneration of the nigrostriatal dopaminergic pathway, as well as the formation of intraneuronal inclusions known as Lewy bodies and Lewy neurites in the substantia nigra. Accumulations of nitrated alpha-synuclein are demonstrated in the signature inclusions of Parkinson's disease. However, whether the nitration of alpha-synuclein is relevant to the pathogenesis of PD is unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this study, effect of nitrated alpha-synuclein to dopaminergic (DA) neurons was determined by delivering nitrated recombinant TAT-alpha-synuclein intracellular. We provide evidence to show that the nitrated alpha-synuclein was toxic to cultured dopaminergic SHSY-5Y neurons and primary mesencephalic DA neurons to a much greater degree than unnitrated alpha-synuclein. Moreover, we show that administration of nitrated alpha-synuclein to the substantia nigra pars compacta of rats caused severe reductions in the number of DA neurons therein, and led to the down-regulation of D(2)R in the striatum in vivo. Furthermore, when administered to the substantia nigra of rats, nitrated alpha-synuclein caused PD-like motor dysfunctions, such as reduced locomotion and motor asymmetry, however unmodified alpha-synuclein had significantly less severe behavioral effects. CONCLUSIONS/SIGNIFICANCE: Our results provide evidence that alpha-synuclein, principally in its nitrated form, induce DA neuron death and may be a major factor in the etiology of PD
    corecore