41 research outputs found

    Assimilation of POLDER observations to estimate aerosol emissions

    Get PDF
    We apply a local ensemble transform Kalman smoother (LETKS) in combination with the global aerosol–climate model ECHAM–HAM to estimate aerosol emissions from POLDER-3/PARASOL (POLarization and Directionality of the Earth's Reflectances) observations for the year 2006. We assimilate aerosol optical depth at 550 mnm (AOD550), the Ångström exponent at 550 and 865 nm (AE550–865), and single-scattering albedo at 550 nm (SSA550) in order to improve modeled aerosol mass, size and absorption simultaneously. The new global aerosol emissions increase to 1419 Tg yr−1 (+28 %) for dust, 1850 Tg yr−1 (+75 %) for sea salt, 215 Tg yr−1 (+143 %) for organic aerosol and 13.3 Tg yr−1 (+75 %) for black carbon, while the sulfur dioxide emissions increase to 198 Tg yr−1 (+42 %) and the total deposition of sulfates to 293 Tg yr−1 (+39 %). Organic and black carbon emissions are much higher than their prior values from bottom-up inventories, with a stronger increase in biomass burning sources (+193 % and +90 %) than in anthropogenic sources (115 % and 70 %). The evaluation of the experiments with POLDER (assimilated) and AERONET as well as MODIS Dark Target (independent) observations shows a clear improvement compared with the ECHAM–HAM control run. Specifically based on AERONET, the global mean error in AOD550 improves from −0.094 to −0.006, while absorption aerosol optical depth at 550 nm (AAOD550) improves from −0.009 to −0.004 after the assimilation. A smaller improvement is also observed in the AE550–865 mean absolute error (from 0.428 to 0.393), with a considerably higher improvement over isolated island sites at the ocean. The new dust emissions are closer to the ensemble median of AEROCOM I, AEROCOM III and CMIP5 as well as some of the previous assimilation studies. The new sea salt emissions have become closer to the reported emissions from previous studies. Indications of a missing fraction of coarse dust and sea salt particles are discussed. The biomass burning changes (based on POLDER) can be used as alternative biomass burning scaling factors for the Global Fire Assimilation System (GFAS) inventory distinctively estimated for organic carbon (2.93) and black carbon (1.90) instead of the recommended scaling of 3.4 (Kaiser et al., 2012). The estimated emissions are highly sensitive to the relative humidity due to aerosol water uptake, especially in the case of sulfates. We found that ECHAM–HAM, like most of the global climate models (GCMs) that participated in AEROCOM and CMIP6, overestimated the relative humidity compared with ERA5 and as a result the water uptake by aerosols, assuming the kappa values are not underestimated. If we use the ERA5 relative humidity, sulfate emissions must be further increased, as modeled sulfate AOD is lowered. Specifically, over East Asia, the lower AOD can be attributed to the underestimated precipitation and the lack of simulated nitrates in the model.</p

    Distinguishing Emission-Associated Ambient Air PM2.5 Concentrations and Meteorological Factor-Induced Fluctuations

    Get PDF
    Although PM2.5 (particulate matter with aerodynamic diameters less than 2.5 μm) in the air originates from emissions, its concentrations are often affected by confounding meteorological effects. Therefore, direct comparisons of PM2.5 concentrations made across two periods, which are commonly used by environmental protection administrations to measure the effectiveness of mitigation efforts, can be misleading. Here, we developed a two-step method to distinguish the significance of emissions and meteorological factors and assess the effectiveness of emission mitigation efforts. We modeled ambient PM2.5 concentrations from 1980 to 2014 based on three conditional scenarios: realistic conditions, fixed emissions, and fixed meteorology. The differences found between the model outputs were analyzed to quantify the relative contributions of emissions and meteorological factors. Emission-related gridded PM2.5 concentrations excluding the meteorological effects were predicted using multivariate regression models, whereas meteorological confounding effects on PM2.5 fluctuations were characterized by probabilistic functions. When the regression models and probabilistic functions were combined, fluctuations in the PM2.5 concentrations induced by emissions and meteorological factors were quantified for all model grid cells and regions. The method was then applied to assess the historical and future trends of PM2.5 concentrations and potential fluctuations on global, national, and city scales. The proposed method may thus be used to assess the effectiveness of mitigation actions

    Impacts of air pollutants from rural Chinese households under the rapid residential energy transition

    Get PDF
    Rural residential energy consumption in China is experiencing a rapid transition towards clean energy, nevertheless, solid fuel combustion remains an important emission source. Here we quantitatively evaluate the contribution of rural residential emissions to PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 μm) and the impacts on health and climate. The clean energy transitions result in remarkable reductions in the contributions to ambient PM2.5, avoiding 130,000 (90,000-160,000) premature deaths associated with PM2.5 exposure. The climate forcing associated with this sector declines from 0.057 ± 0.016 W/m2 in 1992 to 0.031 ± 0.008 W/m2 in 2012. Despite this, the large remaining quantities of solid fuels still contributed 14 ± 10 μg/m3 to population-weighted PM2.5 in 2012, which comprises 21 ± 14% of the overall population-weighted PM2.5 from all sources. Rural residential emissions affect not only rural but urban air quality, and the impacts are highly seasonal and location dependent

    Origin and Radiative Forcing of Black Carbon Aerosol: Production and Consumption Perspectives.

    Get PDF
    Air pollution, a threat to air quality and human health, has attracted ever-increasing attention in recent years. In addition to having local influence, air pollutants can also travel the globe via atmospheric circulation and international trade. Black carbon (BC), emitted from incomplete combustion, is a unique but representative particulate pollutant. This study tracked down the BC aerosol and its direct radiative forcing to the emission sources and final consumers using the global chemical transport model (MOZART-4), the rapid radiative transfer model for general circulation simulations (RRTM), and a multiregional input-output analysis (MRIO). BC was physically transported (i.e., atmospheric transport) from western to eastern countries in the midlatitude westerlies, but its magnitude is near an order of magnitude higher if the virtual flow embodied in international trade is considered. The transboundary effects on East and South Asia by other regions increased from about 3% (physical transport only) to 10% when considering both physical and virtual transport. The influence efficiency on East Asia was also large because of the comparatively large emission intensity and emission-intensive exports (e.g., machinery and equipment). The radiative forcing in Africa imposed by consumption from Europe, North America, and East Asia (0.01 Wm-2) was even larger than the total forcing in North America. Understanding the supply chain and incorporating both atmospheric and virtual transport may improve multilateral cooperation on air pollutant mitigation both domestically and internationally

    Air Quality in a Changing World

    No full text
    Air pollution is one of the most concerning environmental threats to human health [...

    The long-term relationship between emissions and economic growth for SO2, CO2, and BC

    No full text
    Simplified assumptions regarding the relationship between per capita income and emissions are oftentimes utilized to generate future emission scenarios in integrated assessment models (IAMs). One such relationship is an environmental Kuznets curve (EKC), where emissions first increase, then decline with income growth. However, current knowledge about this relationship lacks the specificity needed for each sector and pollutant pairing, which is important for future emission scenarios. To fill this knowledge gap, we analyze the historical relationship between per capita income and emissions of SO _2 , CO _2 , and black carbon (BC) utilizing widely-used global, country-level emission inventories for the following four sectors: power, industry, residential, and transportation. Based on a modeling setup using long-term growth rates, emissions of SO _2 from the power and industrial sectors, as well as CO _2 from the industrial and the residential sectors, largely follow an EKC pattern. Income-emission trajectories for SO _2 and CO _2 from other sectors, and those for BC from all sectors, do not show an EKC, however. Results across different global inventories were variable, indicating that uncertainties within historical emission trajectories persist. Nonetheless, these results demonstrate that long-term income-emission trajectories of air pollutants are both sector and pollutant specific. Future reference trajectories of SO _2 and BC from three IAMs show earlier estimates of turnover incomes and faster rates of emission declines when compared to historical data. Users of future emission scenarios derived using EKC assumptions should consider the underlying uncertainties in such projections in light of this historical analysis

    Simulation Analysis of Mode Hopping Impacts on OFDR Sensing Performance

    No full text
    This article examines the impacts of mode hopping on the sensing performance of optical frequency domain reflectometry (OFDR) and explores the potential for developing economical OFDR interrogators employing low-cost distributed feedback (DFB) lasers. By conducting numerical simulations, this study reveals that mode hopping has minimal effects on distance sensing measurements in free space due to the limited duration of beat interference signal at the incorrect frequency within the coherence length. Additionally, the simulations indicate that mode hopping only slightly affects the distributed strain sensing of OFDR, resulting in an error range of less than ±1µε when 100µε is applied to the sensing fiber. These findings highlight the potential of using low-cost DFB lasers with a 1-nm wavelength sweep range and a 1-MHz linewidth as tunable laser sources in OFDR while maintaining reliable and accurate sensing performance

    Global estimates of carbon monoxide emissions from 1960 to 2013

    No full text
    The quantification of carbon monoxide (CO) emissions is necessary for atmospheric research and has been studied extensively. Aiming to build an inventory with both high spatial resolution and detailed source information, this study estimated the monthly nation-level CO emissions from 79 major sources from 1960 to 2013, based on which a 0.1 degrees x 0.1 degrees gridded emission map was developed for 2011 using a recent energy product. The high sectorial resolution of this inventory can help scientists to study the influence of socioeconomic development on emissions, help decision makers to formulate abatement strategies, and potentially benefit emission-reduction scenario modeling and cost-benefit analysis. Our estimate for 2011 was 888.17 Tg (745.67 Tg-1112.80 Tg), with a much higher contribution from anthropogenic activities (68 %) than wildfire and deforestation (32 %). The anthropogenic emissions in recent years were dominated by developing countries due to the continuously increasing industrial production intensity and/or population explosion. Further discussion of the spatial and temporal variation of emissions was conducted, and a decreased emission intensity was observed, which was attributed to related policies and technological progress.National Natural Science Foundation of China [41571130010, 41390240, 41130754]SCI(E)PubMedARTICLE1864-8732
    corecore