123 research outputs found

    The Phenomenon of “Extreme Socialization” and the Educational Function in Personality Construction

    Get PDF
    The phenomenon of “Extreme Socialization” ignores the significance of individual autonomy and uniqueness, inhibits the healthy and free development of students’ personality, violates the human-oriented educational concept, and is not conducive to the overall development of students, especially the cultivation of students’ innovative spirit. Therefore, in the process of constructing students’ personality, it is necessary to give full play to the relevant functions of education

    Psychometric Properties of Belief into Action Scale among University Students in China

    Get PDF
    Objectives: We examine the reliability and validity of the Belief into Action (BIAC) scale among university students in provinces across Mainland China. Method: The BIAC scale and Religious Commitment Inventory-10 were translated into Chinese, and administered with several other psychosocial measures to 1,830 college students from three universities in China. To assess test-retest reliability, the BIAC scale was re-administered after two weeks to 133 college students. Results: Three factors were extracted using principal components analysis with Promax rotation, which explained 66.3% of the variance in the BIAC. Confirmative factor analysis verified the three factor model (χ2 = 232.03; df =31; p <0.001, CFI=0.95). Cronbach’s alpha for the BIAC scale was 0.83, and test-retest ICCs ranged from 0.41 to 0.90. The BIAC scale total score and the RCI-10 subscales were significantly correlated (r=0.60-0.67, p<0.001). Conclusion: The BIAC scale is a reliable and valid measure of religiosity in Chinese college students

    Economic Evaluation of Post-Combustion CO2 Capture Integration Technology in Natural Gas Combined Cycle Power Plant

    Get PDF
    [Introduction] In recent years, natural gas power generation has played an important role in the construction of clean energy system of China. By the end of the "14th Five-year Plan" in 2025, China's gas power installed capacity is expected to hit 150 million kilowatts. Carbon capture,utilization and storage (CCUS) is one of the key paths for gas power to achieve the carbon peaking and carbon neutrality goals. [Method] To this end, an integrated plant combining 600 MW natural gas combined cycle (NGCC) and CO2 post-combustion capture (PCC) were set up as the simulation object. [Result] The simulation study shows that the design captures all CO2 flue gas with 90% efficiency, the CO2 compression and purification rate is 99.5%, the total output of gas power generation decreases by about 16.05%, the auxiliary power ratio increases by 5.55%, and the demand for circulating cooling water increases by about 50.52%. [Conclusion] The economic analysis shows that the static investment cost of the integrated plant is 54.28% higher than that of the single power plant, and the levelized cost of energy (LCOE) increases by 15.96%, which brings great difficulties to the deployment and development of carbon dioxide capture. However, the natural gas price is still the most important factor affecting the operating cost of the power plant

    Current understanding of CTLA-4: from mechanism to autoimmune diseases

    Get PDF
    Autoimmune diseases (ADs) are characterized by the production of autoreactive lymphocytes, immune responses to self-antigens, and inflammation in related tissues and organs. Cytotoxic T-lymphocyte antigen 4 (CTLA-4) is majorly expressed in activated T cells and works as a critical regulator in the inflammatory response. In this review, we first describe the structure, expression, and how the signaling pathways of CTLA-4 participate in reducing effector T-cell activity and enhancing the immunomodulatory ability of regulatory T (Treg) cells to reduce immune response, maintain immune homeostasis, and maintain autoimmune silence. We then focused on the correlation between CTLA-4 and different ADs and how this molecule regulates the immune activity of the diseases and inhibits the onset, progression, and pathology of various ADs. Finally, we summarized the current progress of CTLA-4 as a therapeutic target for various ADs

    Identification of LncRNA Linc00513 Containing Lupus-Associated Genetic Variants as a Novel Regulator of Interferon Signaling Pathway

    Get PDF
    Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by augmented type I interferon signaling. High-throughput technologies have identified plenty of SLE susceptibility single-nucleotide polymorphisms (SNPs) yet the exact roles of most of them are still unknown. Functional studies are principally focused on SNPs in the coding regions, with limited attention paid to the SNPs in non-coding regions. Long non-coding RNAs (lncRNAs) are important players in shaping the immune response and show relationship to autoimmune diseases. In order to reveal the role of SNPs located near SLE related lncRNAs, we performed a transcriptome profiling of SLE patients and identified linc00513 as a significantly over expressed lncRNA containing functional SLE susceptibility loci in the promoter region. The risk-associated G allele of rs205764 and A allele of rs547311 enhanced linc00513 promoter activity and related to increased expression of linc00513 in SLE. We also identified linc00513 to be a novel positive regulator of type I interferon pathway by promoting the phosphorylation of STAT1 and STAT2. Elevated linc00513 expression positively correlated with IFN score in SLE patients. Linc00513 expression was higher in active disease patients than those inactive ones. In conclusion, our data identify two functional promoter variants of linc00513 that contribute to increased level of linc00513 and confer susceptibility on SLE. The study provides new insights into the genetics of SLE and extends the role of lncRNAs in the pathogenesis of SLE

    Identification of Renal Long Non-coding RNA RP11-2B6.2 as a Positive Regulator of Type I Interferon Signaling Pathway in Lupus Nephritis

    Get PDF
    Objective: Lupus nephritis (LN) is one of the most serious complications of systemic lupus erythematosus (SLE). Type I interferon (IFN-I) is associated with the pathogenesis of LN. Long non-coding RNAs (lncRNAs) have been implicated in the pathogenesis of SLE, however, the roles of lncRNAs in LN are still poorly understood. Here, we identified and investigated the function of LN-associated lncRNA RP11-2B6.2 in regulating IFN-I signaling pathway.Methods: RNA sequencing was used to analyze the expression of lncRNAs in kidney biopsies from LN patients and controls. Antisense oligonucleotides and CRISPRi system or overexpression plasmids and CRISPRa system were used to perform loss or gain of function experiments. In situ hybridization, imaging flow cytometry, dual-luciferase reporter assay, and ATAC sequencing were used to study the functions of lncRNA RP11-2B6.2. RT-qPCR, ELISA, and western blotting were done to detect RNA and protein levels of specific genes.Results: Elevated lncRNA RP11-2B6.2 was observed in kidney biopsies from LN patients and positively correlated with disease activity and IFN scores. Knockdown of lncRNA RP11-2B6.2 in renal cells inhibited the expression of IFN stimulated genes (ISGs), while overexpression of lncRNA RP11-2B6.2 enhanced ISG expression. Knockdown of LncRNA RP11-2B6.2 inhibited the phosphorylation of JAK1, TYK2, and STAT1 in IFN-I pathway, while promoted the chromatin accessibility and the transcription of SOCS1.Conclusion: The expression of lncRNAs is abnormal in the kidney of LN. LncRNA RP11-2B6.2 is a novel positive regulator of IFN-I pathway through epigenetic inhibition of SOCS1, which provides a new therapeutic target to alleviate over-activated IFN-I signaling in LN

    Multicenter validation of the value of BASFI and BASDAI in Chinese ankylosing spondylitis and undifferentiated spondyloarthropathy patients

    Get PDF
    The objectives of this study were to evaluate the reliability of Bath ankylosing spondylitis functional index (BASFI) and Bath ankylosing spondylitis disease activity index (BASDAI) in Chinese ankylosing spondylitis (AS) and undifferentiated spondyloarthropathy (USpA) patients. 664 AS patients by the revised New York criteria for AS and 252 USpA patients by the European Spondyloarthropathy Study Group criteria were enrolled. BASDAI and BASFI questionnaires were translated into Chinese. Participants were required to fill in BASFI and BASDAI questionnaires again after 24 h. Moreover, BASDAI and BASFI were compared in AS patients receiving Enbrel or infliximab before and after treatment. For AS group, BASDAI ICC: 0.9502 (95% CI: 0.9330–0.9502, α = 0.9702), BASFI ICC: 0.9587 (95% CI: 0.9521–0.9645, α = 0.9789). For USpA group, BASDAI ICC: 0.9530 (95% CI: 0.9402–0.9632, α = 0.9760), BASFI ICC: 0.9900 (95% CI: 0.9871–0.9922, α = 0.9950). In the AS group, disease duration, occipital wall distance, modified Schober test, chest expansion, ESR, and CRP showed significant correlation with BASDAI and BASFI (all P < 0.01). In the USpA group, onset age, ESR, and CRP were significantly correlated with BASDAI (all P < 0.05), while modified Schober test, ESR, and CRP were significantly associated with BASFI (all P < 0.05). The change in BASDAI and BASFI via Enbrel or infliximab treatment showed a significant positive correlation (P < 0.01). The two instruments have good reliability and reference value regarding the evaluation of patient’s condition and anti-TNF-α treatment response

    Transient Receptor Potential V Channels Are Essential for Glucose Sensing by Aldolase and AMPK

    Get PDF
    Fructose-1,6-bisphosphate (FBP) aldolase links sensing of declining glucose availability to AMPK activation via the lysosomal pathway. However, how aldolase transmits lack of occupancy by FBP to AMPK activation remains unclear. Here, we show that FBP-unoccupied aldolase interacts with and inhibits endoplasmic reticulum (ER)-localized transient receptor potential channel subfamily V, inhibiting calcium release in low glucose. The decrease of calcium at contact sites between ER and lysosome renders the inhibited TRPV accessible to bind the lysosomal v-ATPase that then recruits AXIN:LKB1 to activate AMPK independently of AMP. Genetic depletion of TRPVs blocks glucose starvation-induced AMPK activation in cells and liver of mice, and in nematodes, indicative of physical requirement of TRPVs. Pharmacological inhibition of TRPVs activates AMPK and elevates NAD(+) levels in aged muscles, rejuvenating the animals' running capacity. Our study elucidates that TRPVs relay the FBP-free status of aldolase to the reconfiguration of v-ATPase, leading to AMPK activation in low glucose

    Hsa-miR-196a2 Rs11614913 Polymorphism Contributes to Cancer Susceptibility: Evidence from 15 Case-Control Studies

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are a family of endogenous, small and noncoding RNAs that negatively regulate gene expression by suppressing translation or degrading mRNAs. Recently, many studies investigated the association between hsa-miR-196a2 rs11614913 polymorphism and cancer risk, which showed inconclusive results. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a meta-analysis of 15 studies that included 9,341 cancer cases and 10,569 case-free controls. We assessed the strength of the association, using odds ratios (ORs) with 95% confidence intervals (CIs). Overall, individuals with the TC/CC genotypes were associated with higher cancer risk than those with the TT genotype (OR=1.18, 95% CI=1.03-1.34, P<0.001 for heterogeneity test). In the stratified analyses, we observed that the CC genotype might modulate breast cancer risk (OR=1.11, 95%CI=1.01-1.23, Pheterogeneity=0.210) and lung cancer risk (OR=1.25, 95%CI=1.06-1.46, Pheterogeneity=0.958), comparing with the TC/TT genotype. Moreover, a significantly increased risk was found among Asian populations in a dominant model (TC/CC versus TT, OR=1.24, 95% CI=1.07-1.43, Pheterogeneity=0.006). CONCLUSIONS: These findings supported that hsa-miR-196a2 rs11614913 polymorphism may contribute to the susceptibility of cancers

    Integrated Profiling of MicroRNAs and mRNAs: MicroRNAs Located on Xq27.3 Associate with Clear Cell Renal Cell Carcinoma

    Get PDF
    Background: With the advent of second-generation sequencing, the expression of gene transcripts can be digitally measured with high accuracy. The purpose of this study was to systematically profile the expression of both mRNA and miRNA genes in clear cell renal cell carcinoma (ccRCC) using massively parallel sequencing technology. Methodology: The expression of mRNAs and miRNAs were analyzed in tumor tissues and matched normal adjacent tissues obtained from 10 ccRCC patients without distant metastases. In a prevalence screen, some of the most interesting results were validated in a large cohort of ccRCC patients. Principal Findings: A total of 404 miRNAs and 9,799 mRNAs were detected to be differentially expressed in the 10 ccRCC patients. We also identified 56 novel miRNA candidates in at least two samples. In addition to confirming that canonical cancer genes and miRNAs (including VEGFA, DUSP9 and ERBB4; miR-210, miR-184 and miR-206) play pivotal roles in ccRCC development, promising novel candidates (such as PNCK and miR-122) without previous annotation in ccRCC carcinogenesis were also discovered in this study. Pathways controlling cell fates (e. g., cell cycle and apoptosis pathways) and cell communication (e. g., focal adhesion and ECM-receptor interaction) were found to be significantly more likely to be disrupted in ccRCC. Additionally, the results of the prevalence screen revealed that the expression of a miRNA gene cluster located on Xq27.3 was consistently downregulated in at least 76.7% of similar to 50 ccRCC patients. Conclusions: Our study provided a two-dimensional map of the mRNA and miRNA expression profiles of ccRCC using deep sequencing technology. Our results indicate that the phenotypic status of ccRCC is characterized by a loss of normal renal function, downregulation of metabolic genes, and upregulation of many signal transduction genes in key pathways. Furthermore, it can be concluded that downregulation of miRNA genes clustered on Xq27.3 is associated with ccRCC
    corecore