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Autoimmune diseases (ADs) are characterized by the production of autoreactive

lymphocytes, immune responses to self-antigens, and inflammation in related

tissues and organs. Cytotoxic T-lymphocyte antigen 4 (CTLA-4) is majorly

expressed in activated T cells and works as a critical regulator in the

inflammatory response. In this review, we first describe the structure,

expression, and how the signaling pathways of CTLA-4 participate in reducing

effector T-cell activity and enhancing the immunomodulatory ability of

regulatory T (Treg) cells to reduce immune response, maintain immune

homeostasis, and maintain autoimmune silence. We then focused on the

correlation between CTLA-4 and different ADs and how this molecule

regulates the immune activity of the diseases and inhibits the onset,

progression, and pathology of various ADs. Finally, we summarized the current

progress of CTLA-4 as a therapeutic target for various ADs.

KEYWORDS

CTLA-4, autoimmunity, regulatory T cell, autoimmune disease, immune regulation
1 Introduction

CTLA-4 is a T-cell co-receptor, also known as CD152. Compared to CD28, CTLA-4

has a superior binding affinity with B7 family molecules, including CD80 and CD86 on

antigen-presenting cells (APCs). Although CTLA-4 binds with B7 co-stimulatory

receptors, it plays a negative role in the activation of T cells (1). Following the T-cell

receptor (TCR) recognizing the antigen presented by the major histocompatibility complex

(MHC) of APC, the CD28 of T cells binds to B7 of APC, which initiates a signaling cascade

and leads to T-cell activation. CTLA-4s express and move to the cell membranes after T-

cell activation, take over B7 from CD28, and suppress T-cell activity (2, 3). The
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coordination of CTLA-4 and CD28 maintains the balance of T-cell

immunity in the body, especially after infection and the onset and

progression of autoimmune disease. However, the precise immune-

regulating mechanism of CTLA-4 in T cells is debatable (4,

5) (Figure 1).

In recent years, CTLA-4 has been shown to play a crucial role in

immune checkpoint-based therapeutics, especially in cancer

treatment, by using monoclonal antibodies against the molecule

(6). Moreover, this regulatory molecule has been intimately

involved in the treatment of autoimmune diseases (7). Elucidating

the immunoregulatory mechanisms and roles of CTLA-4 in

autoimmune diseases will provide potent immunotherapy targets

for these diseases. In this review, we focused on the

immunomodulatory role of CTLA-4 in T-cell immunity,

discussed the key molecular signaling pathways mediated by

CTLA-4, and summarized the latest immunoregulatory effects of

CTLA-4 in various autoimmune diseases, especially its role in the

progress and pathogenesis of the diseases and its clinical application

in the diseases.
2 Gene and expression mechanism
of CTLA-4

In humans and mice, the CTLA-4 gene consists of 4 exons

encoded by chromosomes 2 and 1, respectively. Exon 1 provides the

sequence for the leading peptide, while exon 2 has a CD80/CD86

binding site and a dimerization site. Exon 3 comprises a

transmembrane region, while exon 4 contains the cytoplasmic tail

(8). The CTLA-4 gene has distinct isoforms in humans and mice. In

humans, there is a full-length CTLA-4 mRNA (flCTLA-4,

containing exons 1 to 4) and a soluble cytotoxic T-lymphocyte

antigen 4 (sCTLA-4) that is detectable in serum; however, it does

not contain exon 3 (9, 10). The half-life of flCTLA-4 mRNA is

longer than that of sCTLA-4 mRNA (11). In murine T cells, an

extra CTLA-4 transcript dubbed ligand-independent CTLA-4

(liCTLA-4) is produced, which contains exons 1, 3, and 4 (12, 13).

In vitro studies reported that inhibiting NF-AT activity in T

cells significantly reduced CTLA-4 transcription, suggesting that the

activity of NF-AT was positively correlated with protein expression

(14, 15). Upregulated CTLA-4 expression was also regulated by

cyclic AMP (cAMP) (16). The mRNA of CTLA-4 was detected in T

cells after 1 h of T-cell receptor (TCR) ligation and reached a peak

approximately 24–36 h after T cells were activated by antigen

(17, 18).

The level of CTLA-4 is closely regulated by numerous factors,

such as ligand-inducing expression, cell surface translocation, fast

internalization, recycling, and degradation. CTLA-4 is induced by

TCR ligation and forms a complex with the T-cell receptor

interacting molecule (TRIM) in the trans-Golgi network (TGN),

which promotes protein transfer into the cell surface (19).

Externalization of CTLA-4 is also facilitated by guanosine

triphosphatases (GTPases), adenosine diphosphate ribosylation

factor-1 (ARF-1), phospholipase D (PLD), calcium influx (20),

and Rab11 (21). On the other hand, CTLA-4 internalization is
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regulated by both clathrin-dependent and clathrin-independent

pathways. For the dependent pathway, the cell surface CTLA-4

associates with clathrin adaptor protein-1 (CAP-1) and clathrin

adaptor protein-2 (CAP-2); for the independent pathway, the

CTLA-4 binds to dynamin. After internalization, CTLA-4 is

either delivered into lysosomes or endosomes (22, 23). To

maintain the intracellular stable state of CTLA-4, it binds with

CAP-1 in the TGN of T cells and is then transported to the

lysosomal compartments for degradation (21). Phosphorylation of

CTLA-4 by Lck and Fyn tyrosine kinases inhibits this interaction

and blocks the trafficking of CTLA-4, thus prolonging the retention

of the protein on the cell membrane and reducing degradation of

the protein (24) (Figure 1).
3 The main immunoregulatory
mechanism of CTLA-4

3.1 CTLA-4 with CD28 competing B7 on
activated antigen-presenting cells

The activation of T cells depends on the TCR binding to a

specific antigen presented by the MHC of APCs. However, this

recognition, the first T-cell activation signal, is not sufficient to

cause T-cell activation (25, 26). To fully activate T cells, a second

activation signal called co-stimulation is required. This signal is

provided by a T cell’s inducible CD28 receptor, which binds to its

ligand CD80 or CD86 on activated professional APCs (26). The

activation of CD28 stimulates glucose absorption and cell cycle

progression in T cells by increasing the expression of the anti-

apoptotic proteins Bcl-X (Bcl-xL) and interleukin-2 (IL-2) to reduce

apoptosis and increase proliferation of T cells (27–29). Without

CD28 signaling, T cells will enter clonal anergy and apoptosis (30).

When T cells receive the first and second activation signals, the cells

become completely activated, and antigen-specific effector cells

expand in peripheral lymphoid organs (31). If the antigen of the

pathogen causes an expansion of particular T cells, they will assault

contaminated cells and tissue at the site of infection. If the

proliferated cells are due to self-antigen, they will move to target

tissue and organs, cause inflammation, and damage the self-cell,

tissue, and organ (Figure 2).

CTLA-4 is expressed in activated T lymphocytes and is

transported to the cell membrane. Despite the fact that CD80 and

CD86 are ligands found on APCs that CTLA-4 and CD28 both

share, CTLA-4 has a considerably higher affinity for these ligands

than CD28; therefore, it preferentially binds to CD80/CD86 and

transmits inhibitory signals to prevent CD28-mediated T-cell

activation (1). On the cell membrane, CTLA-4 is phosphorylated

by Fyn and Lck. The phosphorylated CTLA-4 recruits SHIP2,

which dephosphorylates CD3 and linkers for activation of T cells

(LAT). Thus, CTLA-4s disrupt TCR/CD3 and CD28/B7 signaling

and result in downregulating T cells’ activity, immune response,

and inflammatory cytokine production (32, 33), cell cycle

progression, and the transcription factors nuclear factor B (NF-

kB), activator protein 1 (AP-1), and NF-AT (34, 35) (Figure 2).
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In regulatory T (Treg) cells, CTLA-4 is constitutively expressed

and required for the cell’s immune suppressive activity (36). It

interacts with CD80/CD86 on dendritic cells (DCs), which transmit

the inhibitory signal to the APCs, downregulating the expression of

CD80/CD86 and upregulating the expression of indoleamine-2,3-

dioxygenase (IDO) in DCs, thus endowing DCs with immune

tolerance properties (37). IDO released from DCs acts as an

immune regulator for T cells by depleting tryptophan (38, 39).

Deficiency of CTLA-4 in Treg cells impairs the immune suppressive

function of the cells in vivo (40) and leads to abnormal activation

and expansion of conventional T cells (41). On the other hand,

CTLA-4 has been found to promote the generation of CD4+CD25+

regulatory T cells by increasing FoxP3 expression that is induced by

transforming growth factor (TGF-b) (42). So far, the CTLA-4-

mediated signaling in T cells and immune response in DCs still have

not yet been completely elucidated; further study will not only help

to explain T cells’ and DCs’ immune regulation but also help to

understand the mechanism for other immune cell regulation.
3.2 CTLA-4/SYP/p52SHC pathway

The activation of TCR is initiated by binding the antigen

presented by the MHC of DCs, which causes tyrosine

phosphorylation of CD3. The adapter molecule p52SHC is

recruited by activated CD3 and tyrosine phosphorylated by Lck.
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The phosphorylated p52SHC associates with SH2 and SH3 domains

containing protein growth factor receptor bound protein (GRB2),

and via the GRB2, with the guanine nucleotide exchange factor Son-

of-Sevenless (SOS) and Ras form a complex (CD3/p52SHC/GRB2/

SOS/Ras), which regulates the activity of the Ras signal (43, 44). It

has been demonstrated that the tyrosine phosphatase

synaptophysin (SYP) binds to the tyrosine phosphorylated

YVKM motif in the cytoplasmic tail of CTLA-4. The CTLA-4-

associated SYP exhibits tyrosine phosphatase activity towards

p52SHC. The dephosphorylation of p52SHC interferes with the

binding affinity of p52SHC to GRB2, thus disrupting the p52SHC/

GRB2/SOS/Ras complex and resulting in Ras being unable to

exchange GDP with GTP. This indicates that the regulatory effect

of CTLA-4 on TCR-Ras signaling is via dephosphorylation of

p52SHC by SYP (45) (Figure 2).

P52SHC has also been shown to be a component in C-X-C

chemokine receptor type 4 (CXCR4) signaling. The binding of

stromal-derived-factor-1a (SDF-1a) to CXCR4 results in

activation of the receptor and association with Lck, which

promotes phosphorylation of CD3 and p52SHC and assembly

of the p52SHC/ZAP-70/Vav complex, implying that the TCR

transactive pathway can be triggered by CXCR4 (46). On the

other hand, given the tyrosine phosphatase SYP for p52SHC

associated with CTLA-4, the complex of SYP/CTLA-4 may

play a role in disrupting CXCR4-mediated chemotaxis and the

activity of TCR signaling.
FIGURE 1

Signaling pathway of T-cell activation and CTLA-4 surface expression. Two signals are essential for T-cell activation. One is TCR-MHC signaling and
another one is CD28-CD80/86 co-stimulation. After successful co-stimulation, naïve T cells become active and perform their function. After activation, T
cells expresses CTLA-4 and CTLA-4 binds with CD80/86 molecules and functionally inactivated T cell (left panel). The newly synthesized CTLA-4 binds
with TRIM in the TGN and comes out on the cell surface. PLD and ARF-1 are also responsible for externalization of CTLA-4. On the other side, CTLA-4
binds with CAP-1 and directs transport to lysosomal compartment. From the surface, dephosphorylated tyrosine 201 of CTLA-4 binds with clathrin adaptor
protein-2 (CAP-2) and transports endosome to lysosome (right panel). APC, Antigen-presenting cell; TCR, T-cell receptor; MHC, Major histocompatibility
complex; CTLA-4, Cytotoxic T lymphocyte antigen 4; CD28, TRIM, Transmembrane adaptor T-cell receptor interacting molecule; TGN, Trans Golgi
network; PLD, Phospholipase D; ARF-1, GTPase ADP ribolysation factor-1; CAP-1, Clathrin adaptor protein-1; CAP-2, Clathrin adaptor protein-2.
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3.3 CTLA-4/PI3K/AKT pathway

Phosphatidylinositol (3,4,5)-trisphosphates (PIP3), the product

of PI3K, recruits the pleckstrin homology (PH) domain protein

AKT to the membrane. The activation of AKT occurs through the

phosphorylation of Thr-308 by PH domain kinase 1 (PDK1) and

Ser-473 via mechanistic target of rapamycin complex 2 (mTORC2)

(47, 48). The activated AKT is involved in many cellular functions

such as immune regulation, cell proliferation, metabolism, survival,

and anti-apoptosis by mediating the transcriptional factor activities

of NF-kB, NFAT, and AP-1 (35, 49).

As early as 1995, PI3 kinase (PI3K) was reported to bind to the

cytoplasmic pYVKM motif of CTLA-4, but the role of CTLA-4 in

the PI3K/AKT pathway is still not fully understood (50, 51). The

activation of PI3K by CTLA-4 signaling was demonstrated by its

ligand stimulation increasing the phosphorylation of AKT (52). The

function of CTLA-4 is closely related to that of its partners, serine/

threonine phosphatase PP2A (PP2A) and tyrosine phosphatase

SHIP2 (SHIP2). Phosphorylated CTLA-4 has been demonstrated

to be associated with PP2A in its cytoplasmic tail (53) and SHIP2 in

its pYVKM motif (54), but another study showed that CTLA-4

interaction with SHIP2 is indirect, possibly via PI3K (55).

Differences with Schneider et al.’s study and Parry et al.’s study

showed that CTLA-4 inhibited AKT activity through its partner

PP2A, which was confirmed by the PP2A inhibitor okadaic acid or

deleting its lysine-rich domain KLESS (a motif required for PP2A

binding in CTLA-4) (56). This implies that the association of PP2A

and its phosphatase activity is necessary for CTLA-4 to inhibit the

activity of AKT. Interestingly, this inhibition preserved PI3K
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activity, which was further demonstrated by the PI3K inhibitor

LY294002 reducing CTLA-4-induced Bcl-xL production (56). The

function of SHIP2 in CTLA-4 signaling has not yet been elucidated,

as their interaction pattern is still under debate, and SHIP2 has been

shown to increase ERK activity (57). However, it is still possible for

SHIP2 to dephosphorylate some TCR signaling proteins and reduce

TCR-mediated T-cell activation (58, 59). On the other hand, Wu

et al. showed that SHIP2 is required for PI3K/AKT activation via

EGF, PDGF, and IGF signaling (60). AKT phosphorylates the

apoptotic protein BL2 associated agonist of cell death (BAD),

which releases the anti-apoptosis protein B-cell lymphoma 2

(BcL-2) or BcL-XL from the heterodimer of BAD-BcL-2 and

BAD-BcL-XL (61).

Studies have shown that PI3K/AKT signaling activity enhanced

by CTLA-4 plays a key role in maintaining the balance of T-cell

survival, anergy, and apoptosis and in maintaining long-term

immune tolerance (52). However, after combining with CD80/

CD86, CTLA-4 recruits SHIP2 and PP2A to the membrane, the

SHIP2 inhibits TCR signaling by dephosphorylation of CD3, as well

as restrains PI3K/AKT signaling via dephosphorylation of PI3K,

while PP2A directly dephosphorylates AKT to reduce its activity.

The results indicate that the inhibitory activity of CTLA-4 depends

on both PP2A and SHIP2, which coordinate the lower activity of

NF-kB, mTOR, Bcl-xl, and the production of IL-2 in T cells (62),

especially the reduced-AKT activity, which has been demonstrated

to be required for the suppressive function of CD4+CD25+Foxp3+

regulatory T cells (63), and the differentiation and proliferation of

natural Treg cells in the thymus are antagonized by PI3K/AKT

signals via preventing FOXO factors translocating into the nucleus
FIGURE 2

CTLA-4 signaling in T cell and functioning. CTLA-4 targets different molecules to inhibit T- cell activation and functioning. Once conjugated, T cell
with APC initiates different signaling and T-cell proliferation and produces cytokines. CTLA-4 is expressed in cell surface of active T cells and binds
with CD80/86. CTLA-4 signaling dephosphorylates TCR signaling and inhibits CD3 and ZAP70 signaling molecules and ultimately inhibits
phosphorylation of GRB2 to RAS pathway. CTLA-4 inhibits Akt phosphorylation and activation and plays a negative role on the regulation of cell
cycle and inhibits the transcription factors nuclear factor kB (NF-kB), AP-1, and NF-AT activation. Ligation of CTLA-4-CTLA-4Ig resumes T-cell
signaling and functioning. APC, Antigen-presenting cell; AP-1, Activator protein 1; TCR, T-cell receptor; MHC, Major histocompatibility complex;
CTLA-4, Cytotoxic T lymphocyte antigen 4; SYP, Tyrosine phosphatase synaptophysin; GRB2, Growth Factor Receptor-Bound 2; ZAP70, Zeta-chain
associated protein kinase 70; NF-AF, Nuclear factor of activated T cells; ERK, Extracellular signal-regulated kinase; MAPK, Mitogen-activated protein
kinase; PI3K, Phosphatidylinositol 3-kinase; PP2A, Protein phosphatase 2A.
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(50) (Figure 2). On the other hand, the study also reported that

SHIP2 enhanced PI3K activity and was required for PDGF and

IGF-induced AKT phosphorylation in mouse fibroblast (60). The

effects of CTLA-4 on PI3K/AKT signaling are still debatable. The

different results might come from different experimental conditions,

cells, organs, and diseases, but nevertheless, the CTLA-4/PI3K/PKB

pathway plays an important role in immune regulation, especially in

the function of Treg cells.
4 The function of CTLA-4
on immunity

CTLA-4 inhibits immune responses by mediating various

immune-related signaling pathways. It competes with B7 and

CD28 via SYP, dephosphorylates p52SHC in the CD3/p52SHC/

GRB2/SOS complex to inhibit TCR signaling, and regulates TCR

and the PI3K/AKT pathway via SHIP2 and PP2. Thus, CTLA-4

regulates T-cell signaling, modulates T-cell activity, maintains the

balance of immunity, and protects the body from autoimmune

diseases by downregulating the transcription factor activity of Fos,

Jun, c-Myc, AP-1, NF-AT, and NF-kB (49), from which it protects

the body from autoimmune diseases (Figure 2) (64). The mounting

evidence regarding CTLA-4 provides an insight into the molecular

underpinnings of T cells in their functions of immune suppression

and immunological tolerance.

The mice lacking the CTLA-4 gene showed dysregulation of the

T-cell immune response, which exhibited a dramatically increasing

T-cell blast in the lymph nodes and spleens, and the mice died at 3

weeks of age (65). Mice with a specific deletion of CTLA-4 in Treg

cells disrupted the suppressive activity of the cells, spontaneously

developed lymphocyte proliferative disease, and increased CD80

and CD86 expression in DCs, suggesting that the deficiency of

CTLA-4 in Treg cells may inhibit the immune function of DCs (5).

Another study indicated that in the absence of CTLA-4 in mice,

naïve CD4+ T cells spontaneously differentiated into T follicular

helper cells (Tfh), the number of germinal centers increased, and

high levels of cytokines (IL-2, IFN-g, IL-4, and GM-CSF) were

produced (66). Similar results appeared in the blockage of CTLA-4

with antibodies, which further confirms that Tfh differentiation is

regulated by CTLA-4 (67). However, Paterson et al.’s study showed

that CTLA-4-depleted Treg cells still had suppressive activity and

were sufficient to protect mice from EAE, as well as upregulate the

immune regulators IL-10, LAG-3, and PD-1 expression (68). The

patients with the CTLA-4 mutation had dysfunction of FoxP3+ Treg

cells, hyper-proliferation of lymphocytes, and activated effector T

cells, which resulted in a large number of lymphocytes in the

circulation and in lymphoid organs (69). Overall, the evidence

has indicated that CTLA-4 plays an important role in controlling

effector T-cell differentiation, proliferation, and apoptosis and

endowing Treg cell with immune suppressive activity.

Patients with deficient CTLA-4 have lower B-cell death and BCR-

induced proliferation (70). However, the study also showed that the

patients with CTLA-4mutations had lower levels of circulating B cells

and were associated with hypogammaglobulinemia and lymphopenia
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(69, 71). In mice, CTLA-4 deficiency produced a much higher

frequency of activated B cells and an increased amount of

immunoglobulin in their serum. CTLA-4 deletion in both Tfh and

Tfr increased B-cell responses, whereas CTLA-4 deletion in Tfr alone

increased antigen-specific antibody production (72). It has been

demonstrated that CTLA-4 controls the activity of follicular helper

T cells (Tfh) and downregulates co-stimulatory molecules of B cells,

hence suppressing B-cell activation and antibody production (72).

CTLA-4 expression was detected on activated natural killer

(NK) cells, but the function of CTLA-4 in NK cells is under

investigation. The patients with CTLA-4 haploidy significantly

reduced degranulation activity and production of IFN-g in NK

cells (73). The patients with CTLA-4 deficiency exhibited a reduced

number of NK cells and impaired the function of NK cells,

including cytotoxicity and inflammatory cytokine generation; the

upregulated expression of CTLA-4 in activated NK cells provided

an inhibitory signal for controlling NK cell activity and cytokine

generation, which were confirmed by studying CD28 or CTLA-4

gene knockout mice and showing that NK cell IFN-g production

was negatively correlated with the level of CTLA-4 and positively

correlated with the level of CD28 (74).

Research has shown that CTLA-4’s extracellular domain is

sufficient to exert its inhibitory effect on T cells. Recent studies

have demonstrated that CTLA-4 may decrease T-cell immunity

even in the absence of the whole extracellular domain and has a

similar ability to inhibit T-cell activation and cytokine expression in

vitro (75). Overexpression of the cytoplasmic domain of CTLA-4

(cdCTLA 4) promoted naive T-cell preferential differentiation into

Foxp3+ T cells in Th17 differentiation conditions via the reduction

of MAPK phosphorylation and increased nuclear localization of

Smad2/3 (76). Contemporary studies also indicated that cdCTLA-4

raised the number of follicular regulatory T (Tfr) cells and lowered

the number of follicular helper T (Tfh) cells and germinal center

(GC) B cells in draining lymph nodes (77). It implies that not only

the extracellular domain, but also the cytoplasmic domain of

CTLA-4 also has immunoinhibiting activity.
5 CTLA-4: a key regulator
for autoimmunity

To maintain the body’s immune homoeostasis and silence of

autoimmunity, the immune system needs to be tightly regulated,

especially the activity of T cells because they play an important role

in autoimmune regulation (31). After TCRs receive the first

activated signal, the binding of CD28 with B7 on activated APCs

enhances TCR signaling and prevents non-responsiveness or anergy

of T cells. Following the activation of T cells, CTLA-4 is motivated

to move to the cell membrane and compete with CD28 to bind to

CD80/86 on activated APCs. The signal of CTLA-4, directly and via

DCs, inhibits T-cell activation, proliferation, and cytokine

production, thus downregulating T-cell activity (2, 26).

Research has demonstrated that CTLA-4 is a critical negative

regulator of autoimmune diseases (78). Polymorphisms in the

CTLA-4 locus, such as CTLA-4 + 49 G/A, CT60, −1661A/G, and
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many more, have long been associated with autoimmunity (79–81).

The heterozygous mutations of CTLA-4 in T cells have been

reported to be linked to a variety of autoimmune diseases (65,

82). The animal deletion of CTLA-4 leads to unregulated

proliferation and activation of CD4+T cells (83, 84). In mice, the

CTLA-4 deficiency promoted the proliferation of T cells that

infiltrated into targeted tissues and caused organ damage, which

suggests that CTLA-4 dysfunction can induce activation of self-

antigen-specific T cells (85). The functional integrity of the CD28

molecule was necessary for CTLA-4 knockout mice to cause

autoimmune diseases, implying that CTLA-4 suppresses the

autoimmunity caused by the CD28 signaling pathway (86). Taken

together, dysfunctions of CTLA-4 in T cells can cause a breakdown

of immunological self-tolerance and result in susceptibility to

autoimmune diseases.

Deletion of CTLA-4 in B-1a cells led to higher production of

autoantibodies, increased the number of Tfh cells and germinal

centers, and promoted cell differentiation into APCs and greater

self-replenishment in the mice, which caused disruption of immune

homeostasis, loss of immune tolerance, and the development of

autoimmune disease in the late life of the mice (87). In vitro studies

reported that B cells isolated from healthy donors treated with

CTLA-4Ig, a fusion protein of the extracellular domain of CTLA-4

and IgG1, inhibited Staphylococcus aureus-induced CD80/CD86

expression on B cells, especially on the surface of the cell membrane,

and TNF-a and IL-6 secretion from B cells (88). Besides

lymphocyte inactivation, CTLA-4Ig can also inhibit the

differentiation of osteoclasts and therefore regulate osteogenesis,

suggesting that CTLA-4Ig may have the function of preventing

bone destruction in rheumatoid arthritis (RA) (89).
6 CTLA-4: in the development of
autoimmune diseases

The CTLA-4 gene has previously been shown to be associated

with RA, systemic lupus erythematosus (SLE), multiple sclerosis

(MS), type 1 diabetes (T1D), and myasthenia gravis (MG). Patients

with autoimmune diseases (e.g., RA, SLE, MS, and T1D) have lower

levels of CTLA-4 mRNA and protein in their PBMC, spleen, and

lymph nodes than healthy subjects (Table 1).
6.1 CTLA-4 and rheumatoid arthritis

RA is an autoimmune disease that is characterized by severe

inflammation, hyperplasia of synovial lining cells, infiltration of

mononuclear cells, and destruction of the articular joint. In

addition, autoantibodies such as rheumatic factor (RF) and anti-

citrullinated protein antibodies (ACPA) are also present in RA

(103, 104).

CTLA-4 is a molecule that participates in the regulation of T-

cell activity during autoimmune response, and multiple CTLA-4

single-nucleotide polymorphisms (SNPs) have been demonstrated

to be closely associated with RA. Meta-analysis showed that
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polymorphisms of CTLA-4 (rs3087243, rs5742909, rs231775, and

CTLA-4 + 49A/G) were significantly associated with the risk of RA

(105–107). Klocke et al. (108) revealed that the expression of CTLA-

4 by FoxP3+ regulatory T (Treg) cells attenuated the activity of

disease and prevented tissue damage. They also found that

overexpression of CTLA-4 in conventional T (Tcon) cells

inhibited collagen-induced arthritis (CIA) by repressing the

activity of T cells (Figure 3A). RA patients in the quiescent stage

of the disease have lower levels of sCTLA-4 than the patients in the

activating stage (90). CTLA-4 deficiency in Treg cells from RA

patients significantly reduces their immune suppressing activity

(91). Compared with the normal group, CTLA-4 expression in CD4

+ Foxp3+ cells in rheumatoid arthritis patients was reduced, which

was associated with an increased rate of CTLA-4 internalization;

artificially driving CTLA-4 to the T cell surface with PMA restored

the suppressive function of the cells, but this restoration can be

reversed by CTLA-4 inhibition (91). The methylation of the CTLA-

4 promotor’s DNA at the NF-AT binding site resulted in insufficient

CTLA-4 expression in RA patients’ Treg cells, which, in turn, leads

to the failure of the expression and activation of the tryptophan

degrading enzyme indoleamine 2,3-dioxygenase (IDO); as a

consequence, the Treg cells were unable to activate the

kynurenine pathway, which exacerbates the development of the

RA (109). RA clinical trials showed that the CTLA-4-Ig fusion

protein Abatacept can reduce synovial inflammation and pathology

by selectively modulating CD28, CD80, and CD86 co-stimulation

signals in T cells (110, 111), which further confirmed that the

functions of CTLA-4 in immune regulation, especially in Treg cells,

play a very important role in controlling the onset and progression

of RA (Figure 3A).
6.2 CTLA-4 and systemic lupus
erythematosus

SLE is a systemic autoimmune disease resulting from

autoimmune responses against nuclear autoantigens. In SLE, the

body’s immune system attacks various self-tissues and damages a

number of organs, including the kidney, brain, skin, and joints.

Although the exact pathogeny of SLE is not clear, both genetic and

environmental factors might be associated. Hyperactive B cells and

the production of autoantibodies are common in SLE (112). The list

of candidate genes related to SLE pathology is lengthy, especially

MHC and CTLA-4. Several meta-analyses have reported that the

CTLA-4 exon-1 + 49 (A/G) polymorphism is responsible for the

development of SLE, especially in Asians (113, 114). Three other

meta-analyses describe that CTLA-4 promoter -1722T/C, CT60A/

G, and -318C/T polymorphisms also confer risk to SLE

development in Asians and Iranians (115–117).

CTLA-4 is a concern for SLE-related studies due to its

inhibitory role in immune responses and control of hyperactive T

and B cells, the mechanism of which may be through the interaction

between auto-reactive B cells and CD4+ T cells and the CD28/

CD80-86/CTLA-4 axis. Simulating the effect of CTLA-4 competing

with CD28 for B7, anti-CD28 was used to block CD28 signaling in

NZB/NZW mice, which prevented lupus nephritis development,
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prolonged animal survival, reduced production of against double

strand DNA (dsDNA) autoantibodies, and increased expression of

IDO, receptor programmed cell-death-1 (PD-1), and ligand

programmed death ligand-1 (PDL-1) (118). The CD8+CD28+ T

cell subset of PBMCs from patients with active SLE expressed a

lower level of CTLA-4, suggesting that the CD8+CD28+ T cells with

higher activity may result from a lower expression of CTLA-4,

which leads to the development of SLE (92) (Figure 3B). Further

research showed that compared to the control group, the CTLA-4

levels of CD4+CD25+T cells and CD4+CD25+FoxP3+Treg cells

isolated from the patients with SLE were significantly reduced

and were negatively correlated with the SLE disease activity index

and severity (93). Consistent with this result, a study indicated that

the frequency of CTLA-4+ Treg and CD28+ Treg cells in peripheral

blood mononuclear cells (PBMCs) of patients with SLE was also

lower than that of healthy individuals (94). The low expression of

CTLA-4 in patients with SLE leads to a decrease in the immune

regulatory ability of Treg cells, an increase in autoimmune activity,

and the deterioration of SLE. CTLA-4 has been reported to be
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essential for reducing Treg-inhibited effector T-cell proliferation,

decreasing inflammatory cytokine release (119), and maturing of

inducible Treg (iTreg) cells (120) (Figure 3B). Interestingly, another

study showed a higher level of CTLA-4 in FOXP3- T cells from

patients with SLE compared to other autoimmune diseases and

healthy controls, but their study indicated that the FOXP3- T cells in

SLE patients were unable to control activation and proliferation of

effector T cells (121). The studies demonstrated that CD8+ CD28+ T

cells secrete IL-2 and IFN-g and stimulate B-cell proliferation and

function to produce antibodies (122, 123), and that mechanism

directly modulates SLE development. Further study highlighted that

CD8+ T cells can modulate various cytokines, including CTLA-4,

and play a role in the pathogenesis of autoimmune diseases such as

SLE, MS, and T1D (124).

Substantial evidence has demonstrated that genetic changes,

decreased expression, and function abnormalities of CTLA-4

increase the risk of developing SLE and contribute to the onset

and progression of SLE (121, 125). The drugs targeting CTLA-4 are

being investigated as potential treatments for SLE.
TABLE 1 Expression status of CTLA-4 in different autoimmune diseases.

Disease Expression Status References

Rheumatoid arthritis (RA) PBMC, spleen, lymph node ↓ (90, 91)

Systemic lupus erythematosus (SLE) PBMC ↓ (92–94)

Multiple sclerosis (MS) PBMC, spleen, lymph node ↓ (95, 96)

Type 1 diabetes (T1D) Spleen and thymus cell↓ (97, 98)

Autoimmune thyroid disease (AITD) Spleen and lymph node↓ (99–101)

Myasthenia gravis (MG) PBMC↓ (102)
↓ denotes the downregulation or lower expression.
FIGURE 3

Pathophysiological aspects of autoimmune diseases are influenced by CTLA-4. (A) Expression of CTLA-4 in the T conventional and T regulatory cells
(CD+FoxP3+) can inhibit the pathogenesis of RA. (B) CTLA-4 expression attenuates the Treg cell’s immune suppressive function and inhibits the CD8
+ CD28+ T-cell functions that affect B-cell production of autoantibodies during SLE pathogenesis. (C) The CTLA4 signaling molecule can activate
Treg cells and reduce MS activity. (D) CTLA-4 differentiates the CD4+CD25+ Treg cells and inhibits T1D pathogenesis by increasing the secretion of
IL-10 and TGF-b. Additionally, CTLA-4 interaction with macrophages reduces pro-inflammatory cytokine (IL-1 and IFN-g) secretion and inhibits T1D.
(E) In MG, CTLA-4 expression decreases the frequency of Th1 and Th17 cells and their cytokine production. (F) In AITD, the CTLA-4 plays an
inhibitory role by activating the CD4+CD25+ Treg cells and their immunosuppressive functions.
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6.3 CTLA-4 and multiple sclerosis

MS is a chronic autoimmune disease that affects the brain and

central nervous system (CNS). In MS, the body’s immune cells

usually attack the myelin sheath that covers nerve fibers and

disrupts the connection between the brain and other parts of the

body. In addition, auto-reactive T cells play a vital role in initiating

the self-reactive immune response (126). The etiology of MS is

unknown, but some studies suggest that either a viral infection or a

direct autoimmune process is responsible for this disease.

Currently, researchers are focusing on the role of inhibitory

receptors in T cells, especially CTLA-4 and PD-1. It has been

established that CTLA-4 is associated with MS genetically. The

polymorphism of CTLA-4 has been reported to be associated with

MS pathology. The G allele in the rs231775, A>G (+49 A>G)

polymorphism of CTLA-4 contributes to the reduction of auto-

reactive T-cell activation and leads to the development of MS (127).

In contrast, two meta-analyses reported opposite results about

CTLA-4 polymorphism and MS (128, 129).

Several studies have reported defective expression of various

inhibitory receptors, such as CTLA-4, PD-1, and TIM-3, in MS

patients. Freshly isolated PBMCs from MS patients showed lower

levels of CTLA-4, PD-1, and TIM-3 than those from healthy people

(95). Consistent with this finding, compared to healthy controls,

lower surface and higher intracellular expression of CTLA-4 in

CD4+CD25+ T cells were found in MS patients, and these were

correlated with the levels of FoxP3 mRNA (96).

In experimental autoimmune encephalomyelitis (EAE) in mice,

blocking CD80/CD86 molecules with CTLA-4Ig increased disease

score with increased production of interleukin-17 (IL-17) and

interferon-g (IFN-g). On the other hand, the CTLA-4Ig-treated

EAE mouse model drastically reduced the number of CD4+FoxP3+

Treg cells and level of CTLA-4 compared to the untreated EAE

mouse model (130). A study reported that CTLA-4 signaling

peptide can induce Treg cells and inhibit the activity of MS (131)

(Figure 3C). Furthermore, a cysteine-containing cell-penetrating

peptide (AP)-conjugated CTLA-4 cytoplasmic domain (AP-

ctCTLA-4) peptide attenuated the activity of EAE by inhibiting

IL-17A expression and reducing the number of pathogenic IL-

17A+GM-CSF+ CD4 T cells (132). The results suggest that CTLA-4

is a target for the treatment of MS.
6.4 CTLA-4 and type 1 diabetes

T1D, once known as juvenile diabetes, is a chronic immune

disorder in which the patients’ immune system destroys insulin-

making pancreatic b cells, which are mediated by T cells, pro-

inflammatory macrophages, and DCs (133). The underlying

mechanism that causes T1D onset and progression is unknown.

Genetic predisposition and environmental factors may play vital

roles in this pathogenesis. A recent study reported that various

genes have been associated with the pathogenesis of T1D. To date,
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research that shows that specific allele combinations like DRB1*

and DQB1* in HLA are associated with T1D has been reported

(134). Like other genes, the association between T1D and the

polymorphism of CTLA-4 has been studied in several meta-

analyses. One study described that the polymorphism of CTLA-4

(+49 A/G) is strongly associated with T1D in the south Indian

population (134). A homogeneous combination, such as CTLA-

4 + 49 GG/AA genotypes combined with HLA high risk alleles,

confers a risk of T1D development than a heterogeneous gene

combination. Further supporting this evidence is another meta-

analysis that reported that the polymorphism of CTLA-4 + 49 G/A

(rs231775) is associated with autoimmune diseases such as T1D,

rheumatoid arthritis, and SLE in Asian and Caucasian populations

(135). One study in Egypt revealed that the frequency of CTLA-4

polymorphism (+49 A/G) significantly increased in the T1D group

than that in the control group, particularly in younger patients and

female patients (136).

Regulatory T cells, including natural regulatory T cells (nTreg) and

peripheral-induced regulatory T cells (iTreg), are coordinated to

maintain immune homeostasis. A reduction in frequency and/or

function of Treg cells is one of the main reasons for breaking the

immune tolerance of the immune system to b cells and causing T1D

(137, 138). The study showed that CTLA-4 plays a key role in

controlling Treg cell-mediated immunological tolerance (5).

According to a recent study, blocking CTLA-4 in non-obese diabetic

(NOD) mice at 10 days of age induced mice to develop T1D more

quickly than the control group. This result showed that CTLA-4 is

essential for Treg cell differentiation and function in the NOD model

(139). Wang and his colleagues described that the expression and

membrane trafficking of CTLA-4 were significantly higher in Treg cells

than in conventional T cells isolated from the pancreases of the

DO11×RIP-mOVA diabetic mouse model, suggesting that the Treg

cell CTLA-4 plays an important role in the regulation of diabetic

immunity (97). In diabetic patients, Treg cells expressed lower CTLA-4

compared to the control group (98). The patients with melanoma were

treated with anti-PD-1 or anti-CTLA-4, which increased part of the

patients’ glycemia levels and caused T1D and type 2 diabetes (T2D)

during the immunotherapy period. Based on a high level of C-reactive

protein (CRP), they believe that the pathogeny of diabetes may be

insulin resistance caused by inflammation (140) (Figure 3D).

The obesity-induced diabetic mouse model treated with CTLA-4Ig

dramatically improved insulin sensitivity by promoting macrophage

differentiation into M2 macrophages, which increased anti-

inflammatory cytokine (IL-10 and TGF-b) and reduced

proinflammatory cytokine (IL-1 and IFN-g) production (141)

(Figure D). One mechanism by which ethyl pyruvate (EP) reduced

the incidences of streptozotocin-induced T1D was by increasing the

level of CTLA-4 in CD4+CD25highFoxP3+ Treg cells, which also

increased the expression of TGF-b and IL-10 (142) (Figure 3D). On

the other hand, inhibition of CTLA-4 accelerated the development of

T1D, such as miR-487a-3p, which promoted T1D development by

suppressing CTLA-4 and FOXO3 through binding to their 3′UTR
regions (143).
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6.5 CTLA-4 and myasthenia gravis disease

MG is defined as a long-term neuromuscular disease

characterized by weakness and rapid fatigue of skeletal muscle. It

is caused by interrupted communication between nerve and muscle

cells at the neuromuscular junction (NMJ) (144). The destruction of

the neuromuscular junction is due to the production a number of

autoantibodies against acetylcholine receptor (AChR), muscle-

specific kinase (MuSK), and LRP4 (145). Most of the

autoantibodies (IgG1 and IgG3) are anti-AChR that inhibit the

binding and degradation of muscle acetylcholine receptors. MuSK is

a receptor tyrosine kinase that is activated by agrin and essential for

NMJ formation. LRP4 is an agrin receptor that is required for agrin-

induced activation of MuSK and AChR clustering. The effect of

anti-MuSK is to block NMJ formation, and anti-LRP4 antibody

aims to interfere with the activation of MuSK and AChR clustering.

Together, these autoantibodies lead to the damage of NMJ

formation, destruction of NMJ, and disruption of the signal

transduction of NMJ (144, 145).

People who have rs733618, rs231775, and rs3087243*G

polymorphisms in the CTLA-4 gene have increased susceptibility

to MG (146). Functionally abnormal Treg cells were found in MG

patients with low levels of CTLA-4 and CD25 (102). The

hypermethylation at −658 and −793 CpGs of the CTLA-4

promoter has been indicated to be associated with MG by

decreasing the frequency of Treg cells and CTLA-4+ Treg cells

(147). The level of methylation was positively correlated with the

level of anti-acetylcholine receptor (AChR) antibodies in MG

patients. Th1 and Th17 CD4+ T cells and their cytokines IFN-g
and IL-17 showed that they drive anti-AChR and MuSK antibody

production via B cells (148). Anti-CTLA-4 antibody increased the

frequency of Th1 and Th17 cells and their cytokines IL-2, IFN-g,
and IL-17, respectively (149, 150). These imply that the abnormal

CTLA-4 in Treg cells is associated with the generation of the

antibodies (Figure 3E).
6.6 CTLA-4 and autoimmune
thyroid disease

Autoimmune thyroid disease (AITD) is characterized by a loss

of immunological tolerance for the thyroid tissue and damaged

thyroid function. AITD includes Graves’ disease (GD) and

Hashimoto’s thyroiditis (HT). In AITD, lymphocytic infiltration

causes tissue damage and changes the function of the thyroid gland.

It was shown that autoantibodies or autoreactive T cells are

responsible for thyroid tissue injury or inflammation (151). The

environmental factors and genetic associations are described in the

multifactorial etiology of AITD.

Research has demonstrated a close relationship between CTLA-

4 and AITD, including GD and HT (152). The studies

demonstrated that the polymorphisms of CTLA-4 such as +49A/

G and CT60, but not the -318C/T, were found to have a significant

correlation with the risk of HT (153–155). According to recent

studies, the +49A/G CTLA-4 polymorphism has been
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(156), correlate with antithyroid antibody production in children

with HT (157), and increase susceptibility and relapse of GD (158,

159). Additionally, the results of using sodium iodide to induce

AITD in NOD-H2h4 mice and of the treatment or non-treatment

with anti-CTLA-4 antibody indicated that the amount of

mononuclear cell infiltration in the thyroid as well as CD4+

effector T cells in the spleen and the level of thyroglobulin were

significantly higher in the anti-CTLA-4-treated group than those in

the control group (99). The study showed that CTLA-4 plays a key

role in the immune suppressive function of naturally occurring

CD4+CD25+ T (nTreg) cells that is essential for inducing immune

tolerance in murine experimental Hashimoto’s thyroiditis (EHT)

(100) (Figure 3F). Follicular T-helper (Tfh) cells promote the

pathogenesis of AITD. The cell surface expression of CTLA-4 in

T cells was higher in HT patients than in the control group; after

phytohemagglutinin (PHA) stimulation for 48 h, the number of

CD4 T cells expressing CTLA-4 increased in both HT patients and

controls, but CTLA-4 expressed on the cell surface increased only in

HT patients (101). Follicular helper T cells (Tfh) play a crucial role

in the development and maintenance of lymphomatic germinal

centers and provide key signals for germinal B cells to undergo

somatic hypermutation, selection, and high-affinity maturation,

which results in germinal B cells differentiating into plasma cells

that produce high-affinity antibodies. Tfh cells have been found to

facilitate the development of autoantibodies that target self-antigens

in autoimmune disorders like HT (160). In patients with HT, Tfr

cells are thought to inhibit the production of autoantibodies by

suppressing the function of Tfh cells. This is achieved by producing

anti-inflammatory cytokines such as IL-10 and TGF-b, which
inhibit the proliferation and function of Tfh cells (161). In

patients with GD, the number of circulated Tfh negatively

correlated with serum concentrations of TSH receptor antibodies

(162) (Figure 3F). Studies have demonstrated that expression of

CTLA-4 in Tfr cells is essential for the immune suppressive activity

of the cells, but paradoxically, Zhao et al. showed in their study that

the percentage of CTLA-4 on Tfr cells was significantly reduced in

patients with HT (161). APCs interact with CTLA-4 on T cells to

suppress the activation and proliferation of the cells and promote

the development of Treg cells (163). Therefore, it is thought that the

interaction between Tfr cell CTLA-4 and APC CD28 is crucial for

maintaining immunological tolerance and preventing the

emergence of HT and GD. Tfh cells and B cells may become

uncontrollably activated because of dysfunction or a lack of Tfr

cells or CTLA-4, which leads to the production of autoantibodies

and the autoimmune destruction of thyroid tissue (164, 165). This

highlights the importance of Tfr cells and CTLA-4 in maintaining

immune homeostasis and preventing AITD.
7 Prospect of CTLA-4 as autoimmune
disease therapeutics

Although there is no reported association between CTLA-4 and

sex, it is known that conditions such as SLE, AITD, RA, and MS are
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more prevalent in women than men. Genetic analysis of CTLA-4

(Table 2) has reported that co-stimulatory pathways are closely

related to ADs. The study illustrated that deletion of CTLA-4 in

adult mice leads to autoimmune disease (85). Nowadays,

researchers have shown the CTLA-4 immunoglobulin (CTLA-

4Ig) fusion protein has treatment effects for autoimmune diseases

(Table 3). The first soluble CTLA-4Ig antibody, Abatacept, showed

promising effects in RA clinical trials (166). The following improved

variants of CTLA-4Ig, such as Belatacept, XPro95, and MEDI5256,

especially MEDI5256, not only have 128-fold greater binding

affinity to CD80 and CD86 than Abatacept but also have higher

stability and longer pharmacokinetics (167, 168).

Recently, abatacept (CTLA-4Ig) has become a new approach for

RA immunotherapy (169). Treatment with abatacept (CTLA-4Ig)

for rheumatoid arthritis considerably decreased disease severity by

preventing T-cell proliferation, lowering the level of pro-

inflammatory cytokines, and perhaps decreasing the quantity of

autoreactive T cells (170–172). The study reported that CTLA-4Ig

treatment reduces B-cell activity and also enhances the inhibitory

capacity of Treg cells in RA patients (173, 174). The experiments

suggested that CTLA-4Ig may govern humoral responses by

interfering with the interaction between CD28 of T cells and

CD80/CD86 of B cells, thus blocking the CD80/CD86 signal in B

cells (88). Contradictorily, studies have shown that CTLA-4-Ig

significantly increases the proportion of CD4+T and Treg cells by

reducing the level of CD95 in the cells (175), but further analysis

showed that Treg cell suppressive capacity and responsive T-cell

proliferation ability were weakened in RA patients (176). There was

a decrease in myelin basic protein proliferation and IFN-g secretion
in patients with MS treated with CTLA-4Ig (177). On the other

hand, the study indicated that the patients who received anti-

CTLA-4 antibody (ipilimumab) treatment showed clinical

episodes of MS, which further confirms that CTLA-4 is a
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treatment target for MS (178). In individuals with T1D, treatment

with Abatacept had a favorable safety profile (179). During the 2-

year period of taking Abatacept, T1D patients continued to slow b
cell damage and functional decline as well as maintain a low level of

HbA1c, and these effects persisted for at least a year after the

antibody cessation (180). In patients with newly diagnosed T1D, if

they had been treated with Abatacept, the decreased rate of C-

peptide significantly slowed down (181).

So far, AITD (182), SLE (183), diffuse cutaneous systemic

sclerosis (184), MG (185), celiac disease (186), and allergic

asthma (187) do not have the results of clinical trials for CTLA-

4-Ig, but the clinical study indicated that a higher level of sCTLA-4

was found in the serum of the above autoimmune disease patients.

In addition, studies showed that sCTLA-4 reduced the levels of

proinflammatory cytokines such as IFN-g, IL-2, IL-7, and IL-13 and
increased the production of anti-inflammatory cytokines TGF-b
and IL-10. These results imply that CTLA-4 can be a potential target

for treatment of these autoimmune diseases.
8 Conclusion

Tissue damage or organ malfunction can result from the

body’s immune system attacking its own self-antigens. Based on

the T cell being located at the center of immune regulation, the

functions and activities of Treg cells play a prominent role in the

maintenance of body immune homeostasis. CTLA-4 and CD28

are two critical molecules that share a common ligand, CD80/

CD86, on APCs required for T-cell regulation. CTLA-4 has the

opposite effect of CD28 on T-cell immunity through competitive

binding of CD80/CD86, thus blocking the second activating signal

for T-cell activation and resulting in anergy and clonal tolerance

of T cells, which also block DC differentiation and become
TABLE 2 The list of polymorphisms associated with ADs.

Disease Polymorphisms References

Rheumatoid arthritis (RA) rs3087243, rs5742909, rs231775, and +49A/G (105–107)

Systemic lupus erythematosus (SLE) +49 (A/G), −1722T/C, CT60A/G, and −318C/T (113–117)

Multiple sclerosis (MS) rs231775 and +49 A/G (127)

Type 1 diabetes (T1D) +49 A/G (134, 135)

Myasthenia gravis (MG) rs733618, rs231775, and rs3087243 (146)

Autoimmune thyroid disease (AITD) +49A/G and CT60 (153–155)
TABLE 3 Role of anti-CTLA-4/CTLA-4Ig in different autoimmune diseases.

Disease Role of anti-CTLA4/CTLA-4Ig References

Rheumatoid arthritis (RA) Enhance Treg cell activity and reduce B-cell activity (108, 173)

Systemic lupus erythematosus (SLE) Inhibits to produce hyperactive T cells and promotes Treg cell induction (119, 120)

Multiple sclerosis (MS) Reduce the CD4+FoxP3+ Treg cell expression and CTLA-4 expression in the EAE mouse model (130)

Type 1 diabetes (T1D) Improve insulin sensitivity and macrophage differentiation and reduce proinflammatory cytokine production (139)
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immune tolerogenic cells. More and more data have suggested

that CTLA-4 is crucial in the onset and progression of

autoimmune diseases, and this is confirmed by the effects of

CTLA-4Ig in the treatment of autoimmune diseases. However, it

is worth noting that the mechanism by which CTLA-4 regulates

the immunity of Treg cells, B cells, NK cells, DC, and macrophages

needs to be further studied, as well as the effects of this molecule

on endothelial, epithelial, and fibroblast immunoregulation, and

its roles in the treatment of various autoimmune diseases. It is

reasonable to believe that through the study of the CTLA-4

immune regulation signaling pathways and effects on various

autoimmune diseases, there will be benefits for the treatment of

autoimmune diseases.
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Glossary

ADs autoimmune diseases

CTLA-4 cytotoxic T-lymphocyte antigen 4

APCs antigen-presenting cells

MHC major histocompatibility complex

flCTLA-4 full-length cytotoxic T-lymphocyte antigen 4 mRNA

sCTLA-4 soluble cytotoxic T-lymphocyte antigen 4

liCTLA-4 ligand-independent cytotoxic T-lymphocyte antigen 4

NF-AT nuclear factor of activated T cells

cAMP cyclic adenosine monophosphate

TGN trans-Golgi network

GTPases guanosine triphosphatases

ARF-1 adenosine diphosphate ribosylation factor-1

PLD phospholipase D

CAP-1 clathrin adaptor protein-1

CAP-2 clathrin adaptor protein-2

IL-2 interleukin 2

TCR T-cell antigen receptor

Bcl-Xl apoptosis regulator Bcl-X

LAT linker for activation of T cells

NF-kB transcription factor nuclear factor B

Treg regulatory T cell

DCs dendritic cells

GRB2 growth factor receptor bound protein

SOS Son-of-Sevenless

SYP tyrosine phosphatase synaptophysin

CXCR4 C-X-C chemokine receptor type 4

PIP3 phosphatidylinositol (3

4 5)-trisphosphates

PH pleckstrin homology

PDK1 PH domain kinase 1

mTORC2 rapamycin complex 2

PP2A serine/threonine phosphatase PP2A

SHIP2 tyrosine phosphatase SHIP2

BAD BL2-associated agonist of cell death

cdCTLA 4 cytoplasmic domain of CTLA-4

Tfr follicular regulatory T

Tfh follicular helper T

GC germinal center

(Continued)
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RA rheumatoid arthritis

RF rheumatic factor

ACPA anti-citrullinated protein antibodies

Treg regulatory T cell

Tcon conventional T

IDO indoleamine 2, 3-dioxygenase

SLE lupus erythematosus

MS multiple sclerosis

CNS central nervous system

IFN-g interferon-g

AP- cell-penetrating peptide (AP)-conjugated

ctCTLA-4 CTLA-4 cytoplasmic domain

T1D type 1 diabetes

NOD non-obese diabetes

CRP C-reactive protein

AITD autoimmune thyroid disease

HT Hashimoto's thyroiditis

EHT experimental Hashimoto's thyroiditis

MG myasthenia gravis

NMJ neuromuscular junction

AChR acetylcholine receptor

MuSK muscle-specific kinase

AChR anti-acetylcholine receptor

CTLA-4Ig CTLA-4 immunoglobulin
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