8 research outputs found

    A Novel Intelligent Rebound Hammer System Based on Internet of Things

    No full text
    In order to improve the test efficiency of concrete strength and ensure measured data reliability, we present a novel intelligent rebound hammer system which is based on the Internet of Things (IoT) and speech recognition technology. The system uses a STM32F103C8T6 microcontroller as the Main Control Unit (MCU), and one BC26 module as the communication unit, combined with a LD3320 voice recognition module and TOF050H laser ranging sensor to achieve the function of phonetic transcription and laser ranging. Without the need for traditional multi-person collaboration and burdensome data transfer, the system can collect the data of rebound value and location information and send them to the remote cloud information management system automatically in real time. The test results show that the system has high measuring accuracy, good data transmission stability and convenient operation, which could provide guidance for other types of non-destructive testing equipment designs

    Metagenomics Approach to the Intestinal Microbiome Structure and Abundance in High-Fat-Diet-Induced Hyperlipidemic Rat Fed with (−)-Epigallocatechin-3-Gallate Nanoparticles

    No full text
    The effects of nanoparticles (NPs) on microbiota homeostasis and their physiological relevance are still unclear. Herein, we compared the modulation and consequent pharmacological effects of oral administration of (−)-epigallocatechin-3-gallate (EGCG)-loaded β-cyclodextrin (β-CD) NPs (EGCG@β-CD NPs) and EGCG on gut microbiota. EGCG@β-CD NPs were prepared using self-assembly and their influence on the intestinal microbiome structure was analyzed using a metagenomics approach. The “Encapsulation efficiency (EE), particle size, polydispersity index (PDI), zeta potential” of EGCG@β-CD NPs were recorded as 98.27 ± 0.36%, 124.6 nm, 0.313 and –24.3 mV, respectively. Surface morphology of EGCG@β-CD NPs was observed as spherical. Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and molecular docking studies confirmed that EGCG could be well encapsulated in β-CD and formed as EGCG@β-CD NPs. After being continuously administered EGCG@β-CD NPs for 8 weeks, the serum cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and liver malondialdehyde (MDA) levels in the rats were significantly decreased, while the levels of catalase (CAT) and apolipoprotein-A1 (apo-A1) in the liver increased significantly in the hyperlipidemia model of rats, when compared to the high-fat-diet group. Furthermore, metagenomic analysis revealed that the ratio of Verrucomicrobia/Bacteroidetes was altered and Bacteroidetes decreased in the high-fat diet +200 mg/kg·bw EGCG@β-CD NPs group, while the abundance of Verrucomicrobia was significantly increased, especially Akkermansia muciniphila in rat feces. EGCG@β-CD NPs could be a promising EGCG delivery strategy to modulate the gut microbiota, enhancing its employment in the prevention of hyperlipidemia

    RsRbohD1 Plays a Significant Role in ROS Production during Radish Pithiness Development

    No full text
    Pithiness is one of the physiological diseases of radishes, which is accompanied by the accumulation of reactive oxygen species (ROS) during the sponging of parenchyma tissue in the fleshy roots. A respiratory burst oxidase homolog (Rboh, also known as NADPH oxidase) is a key enzyme that catalyzes the production of ROS in plants. To understand the role of Rboh genes in radish pithiness, herein, 10 RsRboh gene families were identified in the genome of Raphanus sativus using Blastp and Hmmer searching methods and were subjected to basic functional analyses such as phylogenetic tree construction, chromosomal localization, conserved structural domain analysis, and promoter element prediction. The expression profiles of RsRbohs in five stages (Pithiness grade = 0, 1, 2, 3, 4, respectively) of radish pithiness were analyzed. The results showed that 10 RsRbohs expressed different levels during the development of radish pithiness. Except for RsRbohB and RsRbohE, the expression of other members increased and reached the peak at the P2 (Pithiness grade = 2) stage, among which RsRbohD1 showed the highest transcripts. Then, the expression of 40 genes related to RsRbohD1 and pithiness were analyzed. These results can provide a theoretical basis for improving pithiness tolerance in radishes

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore