144 research outputs found

    OPTICAL WAVEGUIDE TESTING SYSTEM WITH STANDOFF

    Get PDF
    A waveguide display test system. The system includes a plurality of projectors, a mounting assembly, and a camera. The mounting assembly is covered to hold a waveguide under test. In an image quality configuration a single projector is used with an optical relay that provides a standoff distanced between a virtual pupil and the single projector, and the virtual pupil is located at a walk off distance from the waveguide. In an modulation transfer function (MTF) tester configuration, the single projector is replaced with a plurality of projectors. And each of the plurality of projectors includes a respective relay system that is configured to place a virtual pupil of the projector at an input to the waveguide while having at least a threshold standoff distance between the plurality of projectors and the waveguide. Regardless of configuration, light (e.g., test pattern) from one or more projectors are incoupled to the waveguide, light propagates through the waveguide and is outcoupled to the camera. Images captured by the camera are analyzed to characterize optical properties of the waveguide

    Higher-order Topology of Axion Insulator EuIn2_2As2_2

    Full text link
    Based on first-principles calculations and symmetry analysis, we propose that EuIn2_2As2_2 is a long awaited axion insulator with antiferromagnetic (AFM) long range order. Characterized by the parity-based invariant Z4=2\mathbb Z_4=2, the topological magneto-electric effect is quantized with θ=π\theta=\pi in the bulk, with a band gap as large as 0.1 eV. When the staggered magnetic moment of the AFM phase is along a/ba/b axis, it's also a TCI phase. Gapless surface states emerge on (100), (010) and (001) surfaces, protected by mirror symmetries (nonzero mirror Chern numbers). When the magnetic moment is along cc axis, the (100) and (001) surfaces are gapped. As a consequence of a high-order topological insulator with Z4=2\mathbb Z_4=2, the one-dimensional (1D) chiral state can exist on the hinge between those gapped surfaces. We have calculated both the topological surface states and hinge state in different phases of the system, respectively, which can be detected by ARPES or STM experiments

    Flutter Derivatives Identification and Aerodynamic Performance of an Optimized Multibox Bridge Deck

    Get PDF
    The bridge deck sections used for long-span suspension bridges have evolved through the years, from the compact box deck girders geometrical configurations to twin-box and three-box bridge decks sections. The latest generation of split and multiple-box bridge decks proved to have better aerodynamic behavior; thus further optimization methods are sought for such geometrical configurations. A new type of multibox bridge deck, consisting of four aerodynamically shaped deck boxes, two side decks for the traffic lanes and two middle decks for the railway traffic, connected between them by stabilizing beams, was tested in the wind tunnel for identifying the flutter derivatives and to verify the aerodynamic performance of the proposed multibox deck. Aerodynamic static force coefficients were measured for the multibox bridge deck model, scaled 1 : 80, for Reynolds numbers up to 5.1 × 105, under angles of attack between −8° and 8°. Iterative Least Squares (ILS) method was employed for identifying the flutter derivatives of the multibox bridge deck model, based on the results obtained from the free vibration tests and based on the frequency analysis the critical flutter wind speed for the corresponding prototype of the multibox bridge was estimated at 188 m/s

    Impatient Online Matching

    Get PDF
    We investigate the problem of Min-cost Perfect Matching with Delays (MPMD) in which requests are pairwise matched in an online fashion with the objective to minimize the sum of space cost and time cost. Though linear-MPMD (i.e., time cost is linear in delay) has been thoroughly studied in the literature, it does not well model impatient requests that are common in practice. Thus, we propose convex-MPMD where time cost functions are convex, capturing the situation where time cost increases faster and faster. Since the existing algorithms for linear-MPMD are not competitive any more, we devise a new deterministic algorithm for convex-MPMD problems. For a large class of convex time cost functions, our algorithm achieves a competitive ratio of O(k) on any k-point uniform metric space. Moreover, our deterministic algorithm is asymptotically optimal, which uncover a substantial difference between convex-MPMD and linear-MPMD which allows a deterministic algorithm with constant competitive ratio on any uniform metric space

    Numerical investigation of the interactions between solitary waves and pile breakwaters using BGK-based methods

    Get PDF
    AbstractThe interactions between a solitary wave, which can be used to model a leading tsunami wave, and a pile breakwater made of circular cylinders are numerically investigated. We use the depth-averaged shallow water equations, which are solved by the finite volume method based on the Bhatnagar–Gross–Krook (BGK) model. The numerical results are compared with the experimental data, which yields very good agreement between them when the ratio of wave height to water depth is small (<0.25). As this ratio exceeds the value of 0.25, the larger the ratio is, the bigger deviation of numerical results from experimental data is observed, the possible reasons for this observation are discussed. Both numerical and experimental results indicate that the transmission of the solitary wave decreases and the reflection of the wave increases with reducing gaps between the adjacent cylinders, and that both transmission and reflection coefficients are not very sensitive to the variation in wave height

    NQO1 targeting prodrug triggers innate sensing to overcome checkpoint blockade resistance

    Get PDF
    Lack of proper innate sensing inside tumor microenvironment (TME) limits T cell-targeted immunotherapy. NAD(P)H:quinone oxidoreductase 1 (NQO1) is highly enriched in multiple tumor types and has emerged as a promising target for direct tumor-killing. Here, we demonstrate that NQO1-targeting prodrug β-lapachone triggers tumor-selective innate sensing leading to T cell-dependent tumor control. β-Lapachone is catalyzed and bioactivated by NQO1 to generate ROS in NQO1high tumor cells triggering oxidative stress and release of the damage signals for innate sensing. β-Lapachone-induced high mobility group box 1 (HMGB1) release activates the host TLR4/MyD88/type I interferon pathway and Batf3 dendritic cell-dependent cross-priming to bridge innate and adaptive immune responses against the tumor. Furthermore, targeting NQO1 is very potent to trigger innate sensing for T cell re-activation to overcome checkpoint blockade resistance in well-established tumors. Our study reveals that targeting NQO1 potently triggers innate sensing within TME that synergizes with immunotherapy to overcome adaptive resistance

    All "Magic Angles" Are "Stable" Topological

    Full text link
    We show that the electronic structure of the low-energy bands in the small angle-twisted bilayer graphene consists of a series of semi-metallic and topological phases. In particular we are able to prove, using an approximate low-energy particle-hole symmetry, that the gapped set of bands that exist around all magic angles has what we conjecture to be a stable topological index stabilized by a magnetic symmetry and reflected in the odd winding of the Wilson loop in the Moir\'e BZ. The approximate, emergent particle-hole symmetry is essential to the topology of graphene: when strongly broken, non-topological phases can appear. Our paper underpins topology as the crucial ingredient to the description of low-energy graphene. We provide a 44-band short range tight-binding model whose 22 lower bands have the same topology, symmetry, and flatness as those of the twisted graphene, and which can be used as an effective low-energy model. We then perform large-scale (1100011000 atoms per unit cell, 40 days per k\bf k-point computing time) ab-initio calculations of a series of small angles, from 3∘3^\circ to 1∘1^\circ, which show a more complex and somewhat qualitatively different evolution of the symmetry of the low-energy bands than that of the theoretical Moir\'e model, but which confirms the topological nature of the system. At certain angles, we find no insulating filling in graphene at −4-4 electrons per Moir\'e unit cell. The ab-initio evolution of gaps tends to differ from that of the continuum Moir\'e model.Comment: 7+23 pages, 3+12 figures, 2+3 tables; v2: references added, note adde

    The p53 Pathway Controls SOX2-Mediated Reprogramming in the Adult Mouse Spinal Cord

    Get PDF
    Although the adult mammalian spinal cord lacks intrinsic neurogenic capacity, glial cells can be reprogrammed in vivo to generate neurons after spinal cord injury (SCI). How this reprogramming process is molecularly regulated, however, is not clear. Through a series of in vivo screens, we show here that the p53-dependent pathway constitutes a critical checkpoint for SOX2-mediated reprogramming of resident glial cells in the adult mouse spinal cord. While it has no effect on the reprogramming efficiency, the p53 pathway promotes cell-cycle exit of SOX2-induced adult neuroblasts (iANBs). As such, silencing of either p53 or p21 markedly boosts the overall production of iANBs. A neurotrophic milieu supported by BDNF and NOG can robustly enhance maturation of these iANBs into diverse but predominantly glutamatergic neurons. Together, these findings have uncovered critical molecular and cellular checkpoints that may be manipulated to boost neuron regeneration after SCI
    • …
    corecore