91 research outputs found

    Quality Scalability Compression on Single-Loop Solution in HEVC

    Get PDF
    This paper proposes a quality scalable extension design for the upcoming high efficiency video coding (HEVC) standard. In the proposed design, the single-loop decoder solution is extended into the proposed scalable scenario. A novel interlayer intra/interprediction is added to reduce the amount of bits representation by exploiting the correlation between coding layers. The experimental results indicate that the average Bjøntegaard delta rate decrease of 20.50% can be gained compared with the simulcast encoding. The proposed technique achieved 47.98% Bjøntegaard delta rate reduction compared with the scalable video coding extension of the H.264/AVC. Consequently, significant rate savings confirm that the proposed method achieves better performance

    From Pixels to Region: A Salient Region Detection Algorithm for Location-Quantification Image

    Get PDF
    Image saliency detection has become increasingly important with the development of intelligent identification and machine vision technology. This process is essential for many image processing algorithms such as image retrieval, image segmentation, image recognition, and adaptive image compression. We propose a salient region detection algorithm for full-resolution images. This algorithm analyzes the randomness and correlation of image pixels and pixel-to-region saliency computation mechanism. The algorithm first obtains points with more saliency probability by using the improved smallest univalue segment assimilating nucleus operator. It then reconstructs the entire saliency region detection by taking these points as reference and combining them with image spatial color distribution, as well as regional and global contrasts. The results for subjective and objective image saliency detection show that the proposed algorithm exhibits outstanding performance in terms of technology indices such as precision and recall rates

    Incidence of New Onset Diabetes Mellitus Secondary to Acute Pancreatitis: A Systematic Review and Meta-Analysis

    Get PDF
    Background and Aims: Patients who have an episode of acute pancreatitis (AP) frequently develop diabetes mellitus (DM) over time. The reported incidence of DM after AP varies depending on the severity, etiology and the extent of pancreatic necrosis during AP. We performed a systematic review to determine the incidence of new-onset DM after AP episode (s), and compared the rate of DM in AP patients based upon different disease characteristics.Methods: A total of 31 relevant studies with 13894 subjects were collected from Medline, Embase, and Web of Science. Stata 15 software was used for data analyses in the meta-analysis.Results: The random-effects pooled incidence was 23.0% for DM (95% CI 16.0–31.0%) and 15.0% (95% CI 9.0–23.0%) for DM treated with insulin. We noted substantial heterogeneity in incidence estimates for DM and DM treated with insulin (I2 = 95.61 and 71.78%; both p < 0·001). The DM incidence was higher in the populations that had a severe AP (SAP) episode than in those with mild acute pancreatitis (MAP) (39 vs. 14%). Patients that displayed pancreatic necrosis during the AP attack(s) had a higher frequency of DM than those without necrosis (37 vs. 11%). In addition, the pooled incidence of DM was higher after alcoholic compared to biliary AP (28 vs. 12%). The incidence of insulin use after SAP and alcoholic AP was 21 and 18%, respectively, with very low heterogeneities. According to duration of follow-up, the pooled rate of DM and insulin use within 5 years after AP was 20 and 14%, while the rate associated with follow-up duration of more than 5 years was elevated to 37 and 25%, respectively. On meta-regression, year of publication, male proportion, age at DM test, and duration of follow-up were neither positively nor negatively associated with the incidence of DM and DM treated with insulin in patients who had a prior AP attack.Conclusion: Patients with AP developed DM after discharge from hospital with a frequency of about 23%. SAP, alcoholic AP and acute necrotizing pancreatitis (ANP) were associated with increased incidence of DM. Assessments of severity, etiology, and pancreatic necrosis are critical for predicting DM development after AP

    Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria

    Get PDF
    Abstract: Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria

    Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria

    Get PDF
    Publisher Copyright: © 2019, The Author(s).Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria.Peer reviewe

    Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria

    Get PDF
    Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria

    Fast Coding-Mode Selection and CU-Depth Prediction Algorithm Based on Text-Block Recognition for Screen Content Coding

    No full text

    Fast Algorithm Based on Rough LCU Minimum Depth Prediction and Early CU Partition Termination for HEVC Intra Coding

    No full text

    Deciphering molecular mechanisms of phase separation in RNA biology by single-molecule biophysical technologies

    No full text
    Ribonucleic acid (RNA) biology has emerged as one of the most important areas in modern biology and biomedicine. RNA and RNA-binding proteins (RBPs) are involved in forming biomolecular condensates, which are crucial for RNA metabolism. To quantitively decipher the molecular mechanisms of RNP granules, researchers have turned to single-molecule biophysical techniques, such as single-molecule Förster resonance energy transfer (smFRET), in vivo single-molecule imaging technique with single particle tracking (SPT), DNA Curtains, optical tweezers, and atomic force microscopy (AFM). These methods are used to investigate the molecular biophysical properties within RNP granules, as well as the molecular interactions between RNA and RBPs and RBPs themselves, which are challenging to study using traditional experimental methods of the liquid-liquid phase separation (LLPS) field, such as fluorescence recovery after photobleaching (FRAP). In this work, we summarize the applications of single-molecule biophysical techniques in RNP granule studies and highlight how these methods can be used to reveal the molecular mechanisms of RNP granules
    • …
    corecore