12 research outputs found

    Transmission dynamics and control measures of COVID-19 outbreak in China: a modelling study.

    Get PDF
    COVID-19 is reported to have been brought under control in China. To understand the COVID-19 outbreak in China and provide potential lessons for other parts of the world, in this study we apply a mathematical model with multiple datasets to estimate the transmissibility of the SARS-CoV-2 virus and the severity of the illness associated with the infection, and how both were affected by unprecedented control measures. Our analyses show that before 19th January 2020, 3.5% (95% CI 1.7-8.3%) of  infected people were detected; this percentage increased to 36.6% (95% CI 26.1-55.4%) thereafter. The basic reproduction number (R0) was 2.33 (95% CI 1.96-3.69) before 8th February 2020; then the effective reproduction number dropped to 0.04(95% CI 0.01-0.10). This estimation also indicates that control measures taken since 23rd January 2020 affected the transmissibility about 2 weeks after they were introduced. The confirmed case fatality rate is estimated at 9.6% (95% CI 8.1-11.4%) before 15 February 2020, and then it reduced to 0.7% (95% CI 0.4-1.0%). This shows that SARS-CoV-2 virus is highly transmissible but may be less severe than SARS-CoV-1 and MERS-CoV. We found that at the early stage, the majority of R0 comes from undetected infectious people. This implies that successful control in China was achieved through reducing the contact rates among people in the general population and increasing the rate of detection and quarantine of the infectious cases

    Keeping the rhythm:light/dark cycles during postharvest storage preserve the tissue integrity and nutritional content of leafy plants

    Get PDF
    Background: The modular body structure of plants enables detached plant organs, such as postharvest fruits and vegetables, to maintain active responsiveness to environmental stimuli, including daily cycles of light and darkness. Twenty-four hour light/darkness cycles entrain plant circadian clock rhythms, which provide advantage to plants. Here, we tested whether green leafy vegetables gain longevity advantage by being stored under light/dark cycles designed to maintain biological rhythms. Results: Light/dark cycles during postharvest storage improved several aspects of plant tissue performance comparable to that provided by refrigeration. Tissue integrity, green coloration, and chlorophyll content were generally enhanced by cycling of light and darkness compared to constant light or darkness during storage. In addition, the levels of the phytonutrient glucosinolates in kale and cabbage remained at higher levels over time when the leaf tissue was stored under light/dark cycles. Conclusions: Maintenance of the daily cycling of light and dark periods during postharvest storage may slow the decline of plant tissues, such as green leafy vegetables, improving not only appearance but also the health value of the crops through the maintenance of chlorophyll and phytochemical content after harvest

    Importation, Local Transmission, and Model Selection in Estimating the Transmissibility of COVID-19: The Outbreak in Shaanxi Province of China as a Case Study

    No full text
    Background: Since the emergence of the COVID-19 pandemic, many models have been applied to understand its epidemiological characteristics. However, the ways in which outbreak data were used in some models are problematic, for example, importation was mixed up with local transmission. Methods: In this study, five models were proposed for the early Shaanxi outbreak in China. We demonstrated how to select a reasonable model and correctly use the outbreak data. Bayesian inference was used to obtain parameter estimates. Results: Model comparison showed that the renewal equation model generates the best model fitting and the Susceptible-Exposed-Diseased-Asymptomatic-Recovered (SEDAR) model is the worst; the performance of the SEEDAR model, which divides the exposure into two stages and includes the pre-symptomatic transmission, and SEEDDAAR model, which further divides infectious classes into two equally, lies in between. The Richards growth model is invalidated by its continuously increasing prediction. By separating continuous importation from local transmission, the basic reproduction number of COVID-19 in Shaanxi province ranges from 0.45 to 0.61, well below the unit, implying that timely interventions greatly limited contact between people and effectively contained the spread of COVID-19 in Shaanxi. Conclusions: The renewal equation model provides the best modelling; mixing continuous importation with local transmission significantly increases the estimate of transmissibility

    Flexible and Optical Fiber Sensors Composited by Graphene and PDMS for Motion Detection

    No full text
    A stretchable optical sensor can quantify the strain generated by human movement, which has been widely studied in the development of health monitoring systems, human–machine interfaces and wearable devices. This paper reports a graphene-added polydimethylsiloxane (PDMS) fiber, which has high tensile properties and good light transmittance suitable for detecting human movement. When the graphene-added PDMS fiber is stretched, the concentration of graphene per unit volume is constant, and the sensor uses the optical loss of the beam through the graphene PDMS fiber to detect the tensile strain. The fiber has excellent strain-sensing performance, outstanding sensitivity, a tensile property of 150%, and an excellent waterproofing performance. The linear response and repeated response in large dynamic range could reach 100% stability. The results show that the sensor can be used to detect human motion detection. These excellent properties indicate that the fiber has potential applications in wearable devices, soft robots and electronic skin

    Estimating Dengue Transmission Intensity in China Using Catalytic Models Based on Serological Data

    No full text
    In recent decades, the global incidence of dengue has risen sharply, with more than 75% of infected people showing mild or no symptoms. Since the year 2000, dengue in China has spread quickly. At this stage, there is an urgent need to fully understand its transmission intensity and spread in China. Serological data provide reliable evidence for symptomatic and recessive infections. Through a literature search, we included 23 studies that collected age-specific serological dengue data released from 1980 to 2021 in China. Fitting four catalytic models to these data, we distinguished the transmission mechanisms by deviation information criterion and estimated force of infection and basic reproduction number (R0), important parameters for quantifying transmission intensity. We found that transmission intensity varies over age in most of the study populations, and attenuation of antibody protection is identified in some study populations; the R0 of dengue in China is between 1.04–2.33. Due to the scarceness of the data, the temporal trend cannot be identified, but data shows that transmission intensity weakened from coastal to inland areas and from southern to northern areas in China if assuming it remained temporally steady during the study period. The results should be useful for the effective control of dengue in China
    corecore