124 research outputs found

    Research progress in executive dysfunction among adolescents with non-suicidal self-injury

    Get PDF
    Non-suicidal self-injury (NSSI) in adolescents has gradually become a mental and psychological problem around the world. Globally, the detection rate of NSSI is yearly increasing, and the detection group is also becoming younger. Different from the previous traditional views, NSSI not only exists in the people with affective disorders or psychotic disorders, but may also be present in the people with conduct disorders, substance use disorders, and neurodevelopmental disorders. Its characteristics and neurophysiological mechanisms are also different from pure suicidal behavior and ideation. Adolescents with NSSI often have difficulties and problems in academic performance and social interaction, and these problems are often related to executive dysfunction. There are many components of executive functions, and the impairment of different components indicates that the individual has corresponding dysfunction. Recent research has found that executive dysfunction, including impairments of attention, working memory, and inhibition, is associated with the occurrence of NSSI, and even indicates the occurrence of NSSI in the future. In addition, more and more studies have also confirmed that compared with the normal group, there are differences in brain functions and structures in the NSSI group. In these studies, some researchers have applied executive function-related paradigms and obtained the evidence in task-functional MRI and neuroelectrophysiology. This article reviews the research on executive dysfunction and its neural mechanisms in adolescents with NSSI in recent years

    Delivery of the Sox9 gene promotes chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells in an in vitro model

    Get PDF
    SRY-related high-mobility-group box 9 (Sox9) gene is a cartilage-specific transcription factor that plays essential roles in chondrocyte differentiation and cartilage formation. The aim of this study was to investigate the feasibility of genetic delivery of Sox9 to enhance chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells (hUC-MSCs). After they were isolated from human umbilical cord blood within 24 h after delivery of neonates, hUC-MSCs were untreated or transfected with a human Sox9-expressing plasmid or an empty vector. The cells were assessed for morphology and chondrogenic differentiation. The isolated cells with a fibroblast-like morphology in monolayer culture were positive for the MSC markers CD44, CD105, CD73, and CD90, but negative for the differentiation markers CD34, CD45, CD19, CD14, or major histocompatibility complex class II. Sox9 overexpression induced accumulation of sulfated proteoglycans, without altering the cellular morphology. Immunocytochemistry demonstrated that genetic delivery of Sox9 markedly enhanced the expression of aggrecan and type II collagen in hUC-MSCs compared with empty vector-transfected counterparts. Reverse transcription-polymerase chain reaction analysis further confirmed the elevation of aggrecan and type II collagen at the mRNA level in Sox9-transfected cells. Taken together, short-term Sox9 overexpression facilitates chondrogenesis of hUC-MSCs and may thus have potential implications in cartilage tissue engineering.publishedVersio

    Optical and molecular diversity of dissolved organic matter in sediments of the Daning and Shennong tributaries of the Three Gorges Reservoir

    Get PDF
    Introduction: Damming significantly modifies the function of natural river networks and influences sediment dynamics with a reservoir’s operation. The dissolved organic matter (DOM) in reservoir sediments severely affects carbon flow from land to sea. However, the properties of DOM (e.g., quantity and quality) in reservoir sediments and their relationship with carbon cycling remain unclear as complex reservoir construction interrupts the environmental processes.Methods: This study characterizes the optical and molecular properties of sediment water-extractable organic matter (WEOM) in the Daning and Shennong tributaries of the world’s largest reservoir—the Three Gorges Reservoir (TGR)—by applying optical techniques and ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS).Results and Discussion: We first assessed the link between light-absorbing components and the individual molecules in WEOM, which were significantly different than DOM in water and indicated that there might be an intrinsic variation between DOM in sediment and in water. Then, with the unique optical–molecular property linkage assessed, multiple sources (autochthonous and terrestrial) were identified, and a declining trend of terrestrial and recalcitrant WEOM was revealed from the tributaries upstream to downstream. Finally, through covariance analysis of the properties between WEOM and sediment particles, we demonstrated that the WEOM dynamic was most likely regulated by hydrologic sorting-induced particle size and mineral composition variations of sediment. Moreover, assessment between lability and WEOM molecular properties suggested that the WEOM dynamic likely contributes to carbon burial in the reservoir. This study emphasizes the influence of dam construction on organic matter accumulation and riverine carbon cycling

    Chemical composition and source apportionment of PM <sub>2.5</sub> in urban areas of Xiangtan, central south China

    Get PDF
    Xiangtan, South China, is characterized by year-round high relative humidity and very low wind speeds. To assess levels of PM2.5, daily samples were collected from 2016 to 2017 at two urban sites. The mass concentrations of PM2.5 were in the range of 30&#8315;217 &#181;g/m3, with the highest concentrations in winter and the lowest in spring. Major water-soluble ions (WSIIs) and total carbon (TC) accounted for 58&#8315;59% and 21&#8315;24% of the PM2.5 mass, respectively. Secondary inorganic ions (SO42&#8722;, NO3&#8722;, and NH4+) dominated the WSIIs and accounted for 73% and 74% at the two sites. The concentrations of K, Fe, Al, Sb, Ca, Zn, Mg, Pb, Ba, As, and Mn in the PM2.5 at the two sites were higher than 40 ng/m3, and decreased in the order of winter &gt; autumn &gt; spring. Enrichment factor analysis indicates that Co, Cu, Zn, As, Se, Cd, Sb, Tl, and Pb mainly originates from anthropogenic sources. Source apportionment analysis showed that secondary inorganic aerosols, vehicle exhaust, coal combustion and secondary aerosols, fugitive dust, industrial emissions, steel industry are the major sources of PM2.5, contributing 25&#8315;27%, 21&#8315;22%, 19&#8315;21%, 16&#8315;18%, 6&#8315;9%, and 8&#8315;9% to PM2.5 mass

    10.13% Efficiency All-Polymer Solar Cells Enabled by Improving the Optical Absorption of Polymer Acceptors

    Get PDF
    The limited light absorption capacity for most polymer acceptors hinders the improvement of the power conversion efficiency (PCE) of all-polymer solar cells (all-PSCs). Herein, by simultaneously increasing the conjugation of the acceptor unit and enhancing the electron-donating ability of the donor unit, a novel narrow-bandgap polymer acceptor PF3-DTCO based on an A–D–A-structured acceptor unit ITIC16 and a carbon–oxygen (C–O)-bridged donor unit DTCO is developed. The extended conjugation of the acceptor units from IDIC16 to ITIC16 results in a red-shifted absorption spectrum and improved absorption coefficient without significant reduction of the lowest unoccupied molecular orbital energy level. Moreover, in addition to further broadening the absorption spectrum by the enhanced intramolecular charge transfer effect, the introduction of C–O bridges into the donor unit improves the absorption coefficient and electron mobility, as well as optimizes the morphology and molecular order of active layers. As a result, the PF3-DTCO achieves a higher PCE of 10.13% with a higher short-circuit current density (Jsc) of 15.75 mA cm−2 in all-PSCs compared with its original polymer acceptor PF2-DTC (PCE = 8.95% and Jsc = 13.82 mA cm−2). Herein, a promising method is provided to construct high-performance polymer acceptors with excellent optical absorption for efficient all-PSCs

    Gazelle: A Low Latency Framework for Secure Neural Network Inference

    Full text link
    The growing popularity of cloud-based machine learning raises a natural question about the privacy guarantees that can be provided in such a setting. Our work tackles this problem in the context where a client wishes to classify private images using a convolutional neural network (CNN) trained by a server. Our goal is to build efficient protocols whereby the client can acquire the classification result without revealing their input to the server, while guaranteeing the privacy of the server's neural network. To this end, we design Gazelle, a scalable and low-latency system for secure neural network inference, using an intricate combination of homomorphic encryption and traditional two-party computation techniques (such as garbled circuits). Gazelle makes three contributions. First, we design the Gazelle homomorphic encryption library which provides fast algorithms for basic homomorphic operations such as SIMD (single instruction multiple data) addition, SIMD multiplication and ciphertext permutation. Second, we implement the Gazelle homomorphic linear algebra kernels which map neural network layers to optimized homomorphic matrix-vector multiplication and convolution routines. Third, we design optimized encryption switching protocols which seamlessly convert between homomorphic and garbled circuit encodings to enable implementation of complete neural network inference. We evaluate our protocols on benchmark neural networks trained on the MNIST and CIFAR-10 datasets and show that Gazelle outperforms the best existing systems such as MiniONN (ACM CCS 2017) by 20 times and Chameleon (Crypto Eprint 2017/1164) by 30 times in online runtime. Similarly when compared with fully homomorphic approaches like CryptoNets (ICML 2016) we demonstrate three orders of magnitude faster online run-time

    Functionalizing tetraphenylpyrazine with perylene diimides (PDIs) as high-performance nonfullerene acceptors

    Get PDF
    Perylene diimide (PDI)-based small molecular acceptors with a three-dimensional structure are thought to be essential for efficient photocurrent generation and high power conversion efficiencies (PCEs). Herein, a couple of new perylene diimide acceptors (PPDI-O and PPDI-Se) have been designed and successfully synthesized using pyrazine as the core-flanking pyran and selenophene-fused PDIs, respectively. Compared to PPDI-O, PPDI-Se exhibits a blue-shifted absorption in the 400–600 nm range, a comparable LUMO level, and a more distorted molecular geometry. The PPDI-Se-based organic solar cell device with PDBT-T1 as the donor achieved the highest PCE of 7.47% and a high open-circuit voltage (Voc) of up to 1.05 V. The high photovoltaic performance of PPDI-Se-based devices can be attributed to its high LUMO energy level, complementary absorption spectra with donor materials, favorable morphology and balanced carrier transport. The results demonstrate the potential of this type of fullerene-free acceptor for high efficiency organic solar cells

    Near-atomic cryo-electron microscopy structures of varicella-zoster virus capsids

    Get PDF
    VZV是一种广泛存在并且具有高度传染性的人类α-疱疹病毒。初次感染VZV可导致水痘,人群普遍易感(感染率约为61%~100%)。该病毒可在背根神经节潜伏感染,持续终生。夏宁邵教授团队长期开展VZV相关基础与新型疫苗研究,通过系统和精细探索建立了高效的VZV规模化培养和病毒颗粒纯化技术体系,成功获得高质量的VZV颗粒样品。首次揭示了疱疹病毒α家族的水痘-带状疱疹病毒(VZV)不同类型核衣壳的近原子分辨率结构,阐明了VZV核衣壳不同组成蛋白的相互作用网络与衣壳装配机制,可为进一步开展新型载体疫苗设计及抗病毒药物等研究提供重要支持。 我校博士后王玮、高级工程师郑清炳、博士生潘德全和俞海副教授为该论文共同第一作者,我校夏宁邵教授、程通副教授、李少伟教授以及美国罗格斯大学朱桦(Hua Zhu)教授、加利福尼亚大学洛杉矶分校周正洪(Z. Hong Zhou)教授为该论文的共同通讯作者。【Abstract】Varicella-zoster virus (VZV) is a medically important human herpesvirus that causes chickenpox and shingles, but its cell-associated nature has hindered structure studies. Here we report the cryo-electron microscopy structures of purified VZV A-capsid and C-capsid, as well as of the DNA-containing capsid inside the virion. Atomic models derived from these structures show that, despite enclosing a genome that is substantially smaller than those of other human herpesviruses, VZV has a similarly sized capsid, consisting of 955 major capsid protein (MCP), 900 small capsid protein (SCP), 640 triplex dimer (Tri2) and 320 triplex monomer (Tri1) subunits. The VZV capsid has high thermal stability, although with relatively fewer intra- and inter-capsid protein interactions and less stably associated tegument proteins compared with other human herpesviruses. Analysis with antibodies targeting the N and C termini of the VZV SCP indicates that the hexon-capping SCP—the largest among human herpesviruses—uses its N-terminal half to bridge hexon MCP subunits and possesses a C-terminal flexible half emanating from the inner rim of the upper hexon channel into the tegument layer. Correlation of these structural features and functional observations provide insights into VZV assembly and pathogenesis and should help efforts to engineer gene delivery and anticancer vectors based on the currently available VZV vaccine.This research was supported by grants from the National Science and Technology Major Projects for Major New Drugs Innovation and Development (no. 2018ZX09711003-005-003), the National Science and Technology Major Project of Infectious Diseases (no. 2017ZX10304402), the National Natural Science Foundation of China (no. 81871648, 81601762), the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences (no. 2019RU022) and the US National Institutes of Health (DE025567/028583). 该研究获得了国家自然科学基金、新药创制国家科技重大专项和传染病防治国家科技重大专项等资助
    corecore