692 research outputs found
A Weighted Estimate for the Square Function on the Unit Ball in \C^n
We show that the Lusin area integral or the square function on the unit ball
of \C^n, regarded as an operator in weighted space has a linear
bound in terms of the invariant characteristic of the weight. We show a
dimension-free estimate for the ``area-integral'' associated to the weighted
norm of the square function. We prove the equivalence of the classical
and the invariant classes.Comment: 11 pages, to appear in Arkiv for Matemati
Evolution of genomes, host shifts and the geographic spread of SARS-CoV and related coronaviruses
Severe acute respiratory syndrome (SARS) is a novel human illness caused by a previously unrecognized coronavirus (CoV) termed SARS-CoV. There are conflicting reports on the animal reservoir of SARS-CoV. Many of the groups that argue carnivores are the original reservoir of SARS-CoV use a phylogeny to support their argument. However, the phylogenies in these studies often lack outgroup and rooting criteria necessary to determine the origins of SARS-CoV. Recently, SARS-CoV has been isolated from various species of Chiroptera from China (e.g., Rhinolophus sinicus) thus leading to reconsideration of the original reservoir of SARS-CoV. We evaluated the hypothesis that SARS-CoV isolated from Chiroptera are the original zoonotic source for SARS-CoV by sampling SARS-CoV and non-SARS-CoV from diverse hosts including Chiroptera, carnivores, artiodactyls and humans. Regardless of alignment parameters, optimality criteria, or isolate sampling, the resulting phylogenies clearly show that the SARS-CoV was transmitted to small carnivores well after the epidemic of SARS in humans that began in late 2002. The SARS-CoV isolates from small carnivores in Shenzhen markets form a terminal clade that emerged recently from within the radiation of human SARS-CoV. There is evidence of subsequent exchange of SARS-CoV between humans and carnivores. In addition SARS-CoV was transmitted independently from humans to farmed pigs (Sus scrofa). The position of SARS-CoV isolates from Chiroptera are basal to the SARS-CoV clade isolated from humans and carnivores. Although sequence data indicate that Chiroptera are a good candidate for the original reservoir of SARS-CoV, the structural biology of the spike protein of SARS-CoV isolated from Chiroptera suggests that these viruses are not able to interact with the human variant of the receptor of SARS-CoV, angiotensin-converting enzyme 2 (ACE2). In SARS-CoV study, both visually and statistically, labile genomic fragments and, putative key mutations of the spike protein that may be associated with host shifts. We display host shifts and candidate mutations on trees projected in virtual globes depicting the spread of SARS-CoV. These results suggest that more sampling of coronaviruses from diverse hosts, especially Chiroptera, carnivores and primates, will be required to understand the genomic and biochemical evolution of coronaviruses, including SARS-CoV.Fil: Janies, Daniel. Ohio State University; Estados UnidosFil: Habib, Farhat. Ohio State University; Estados UnidosFil: Alexandrov, Boyan. Ohio State University; Estados UnidosFil: Hill, Andrew. University of Colorado; Estados UnidosFil: Pol, Diego. Museo Paleontológico Egidio Feruglio; Argentina. Ohio State University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
Projected SO(5) Hamiltonian for Cuprates and Its Applications
The projected SO(5) (pSO(5)) Hamiltonian incorporates the quantum spin and
superconducting fluctuations of underdoped cuprates in terms of four bosons
moving on a coarse grained lattice. A simple mean field approximation can
explain some key feautures of the experimental phase diagram: (i) The Mott
transition between antiferromagnet and superconductor, (ii) The increase of T_c
and superfluid stiffness with hole concentration x and (iii) The increase of
antiferromagnetic resonance energy as sqrt{x-x_c} in the superconducting phase.
We apply this theory to explain the ``two gaps'' problem found in underdoped
cuprate Superconductor-Normal- Superconductor junctions. In particular we
explain the sharp subgap Andreev peaks of the differential resistance, as
signatures of the antiferromagnetic resonance (the magnon mass gap). A critical
test of this theory is proposed. The tunneling charge, as measured by shot
noise, should change by increments of Delta Q= 2e at the Andreev peaks, rather
than by Delta Q=e as in conventional superconductors.Comment: 3 EPS figure
Production and decay of the Standard Model Higgs Bososn at LEP200
We collect and update theoretical predictions for the production rate and
decay branching fractions of the Standard Model Higgs boson that will be
relevant for the Higgs search at LEP200. We make full use of the present
knowledge of radiative corrections. We estimate the systematics arising from
theoretical and experimental uncertainties.Comment: 27 page
Standard Model Higgs-Boson Branching Ratios with Uncertainties
We present an update of the branching ratios for Higgs-boson decays in the
Standard Model. We list results for all relevant branching ratios together with
corresponding uncertainties resulting from input parameters and missing
higher-order corrections. As sources of parametric uncertainties we include the
masses of the charm, bottom, and top quarks as well as the QCD coupling
constant. We compare our results with other predictions in the literature.Comment: 32 pages, 4 figures, contribution to LHC Higgs Cross Section Working
Group https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections,
theoretical uncertainties for H->\mu\mu{} added, version to appear in
European Physical Journal
Magnetothermal Conductivity of Highly Oriented Pyrolytic Graphite in the Quantum Limit
We report on the magnetic field (0TT) dependence of the
longitudinal thermal conductivity of highly oriented pyrolytic
graphite in the temperature range 5 K 20 K for fields parallel to
the axis. We show that shows large oscillations in the
high-field region (B > 2 T) where clear signs of the Quantum-Hall effect are
observed in the Hall resistance. With the measured longitudinal electrical
resistivity we show that the Wiedemann-Franz law is violated in the high-field
regime.Comment: 4 Figures, to be published in Physical Review B (2003
Low energy excitations and dynamic Dzyaloshinskii-Moriya interaction in -NaVO studied by far infrared spectroscopy
We have studied far infrared transmission spectra of alpha'-NaV2O5 between 3
and 200cm-1 in polarizations of incident light parallel to a, b, and c
crystallographic axes in magnetic fields up to 33T. The triplet origin of an
excitation at 65.4cm-1 is revealed by splitting in the magnetic field. The
magnitude of the spin gap at low temperatures is found to be magnetic field
independent at least up to 33T. All other infrared-active transitions appearing
below Tc are ascribed to zone-folded phonons. Two different dynamic
Dzyaloshinskii-Moriya (DM) mechanisms have been discovered that contribute to
the oscillator strength of the otherwise forbidden singlet to triplet
transition. 1. The strongest singlet to triplet transition is an electric
dipole transition where the polarization of the incident light's electric field
is parallel to the ladder rungs, and is allowed by the dynamic DM interaction
created by a high frequency optical a-axis phonon. 2. In the incident light
polarization perpendicular to the ladder planes an enhancement of the singlet
to triplet transition is observed when the applied magnetic field shifts the
singlet to triplet resonance frequency to match the 68cm-1 c-axis phonon
energy. The origin of this mechanism is the dynamic DM interaction created by
the 68cm-1 c-axis optical phonon. The strength of the dynamic DM is calculated
for both mechanisms using the presented theory.Comment: 21 pages, 22 figures. Version 2 with replaced fig. 18 were labels had
been los
Free flux flow resistivity in strongly overdoped high-T_c cuprate; purely viscous motion of the vortices in semiclassical d-wave superconductor
We report the free flux flow (FFF) resistivity associated with a purely
viscous motion of the vortices in moderately clean d-wave superconductor
Bi:2201 in the strongly overdoped regime (T_c=16K) for a wide range of the
magnetic field in the vortex state. The FFF resistivity is obtained by
measuring the microwave surface impedance at different microwave frequencies.
It is found that the FFF resistivity is remarkably different from that of
conventional s-wave superconductors. At low fields (H<0.2H_c2) the FFF
resistivity increases linearly with H with a coefficient which is far larger
than that found in conventional s-wave superconductors. At higher fields, the
FFF resistivity increases in proportion to \sqrt H up to H_c2. Based on these
results, the energy dissipation mechanism associated with the viscous vortex
motion in "semiclassical" d-wave superconductors with gap nodes is discussed.
Two possible scenarios are put forth for these field dependence; the
enhancement of the quasiparticle relaxation rate and the reduction of the
number of the quasiparticles participating the energy dissipation in d-wave
vortex state.Comment: 9 pages 7 figures, to appear in Phys. Rev.
Calicivirus from Novel Recovirus Genogroup in Human Diarrhea, Bangladesh
To identify unknown human viruses in the enteric tract, we examined 105 stool specimens from patients with diarrhea in Bangladesh. A novel calicivirus was identified in a sample from 1 patient and subsequently found in samples from 5 other patients. Phylogenetic analyses classified this virus within the proposed genus Recovirus
Association of Lipoprotein(a) With Atherosclerotic Plaque Progression
BACKGROUND: Lipoprotein(a) [Lp(a)] is associated with increased risk of myocardial infarction, although the mechanism for this observation remains uncertain. OBJECTIVES: This study aims to investigate whether Lp(a) is associated with adverse plaque progression. METHODS: Lp(a) was measured in patients with advanced stable coronary artery disease undergoing coronary computed tomography angiography at baseline and 12 months to assess progression of total, calcific, noncalcific, and low-attenuation plaque (necrotic core) in particular. High Lp(a) was defined as Lp(a) ≥ 70 mg/dL. The relationship of Lp(a) with plaque progression was assessed using linear regression analysis, adjusting for body mass index, segment involvement score, and ASSIGN score (a Scottish cardiovascular risk score comprised of age, sex, smoking, blood pressure, total and high-density lipoprotein [HDL]–cholesterol, diabetes, rheumatoid arthritis, and deprivation index). RESULTS: A total of 191 patients (65.9 ± 8.3 years of age; 152 [80%] male) were included in the analysis, with median Lp(a) values of 100 (range: 82 to 115) mg/dL and 10 (range: 5 to 24) mg/dL in the high and low Lp(a) groups, respectively. At baseline, there was no difference in coronary artery disease severity or plaque burden. Patients with high Lp(a) showed accelerated progression of low-attenuation plaque compared with low Lp(a) patients (26.2 ± 88.4 mm(3) vs −0.7 ± 50.1 mm(3); P = 0.020). Multivariable linear regression analysis confirmed the relation between Lp(a) and low-attenuation plaque volume progression (β = 10.5% increase for each 50 mg/dL Lp(a), 95% CI: 0.7%-20.3%). There was no difference in total, calcific, and noncalcific plaque volume progression. CONCLUSIONS: Among patients with advanced stable coronary artery disease, Lp(a) is associated with accelerated progression of coronary low-attenuation plaque (necrotic core). This may explain the association between Lp(a) and the high residual risk of myocardial infarction, providing support for Lp(a) as a treatment target in atherosclerosis
- …