The projected SO(5) (pSO(5)) Hamiltonian incorporates the quantum spin and
superconducting fluctuations of underdoped cuprates in terms of four bosons
moving on a coarse grained lattice. A simple mean field approximation can
explain some key feautures of the experimental phase diagram: (i) The Mott
transition between antiferromagnet and superconductor, (ii) The increase of T_c
and superfluid stiffness with hole concentration x and (iii) The increase of
antiferromagnetic resonance energy as sqrt{x-x_c} in the superconducting phase.
We apply this theory to explain the ``two gaps'' problem found in underdoped
cuprate Superconductor-Normal- Superconductor junctions. In particular we
explain the sharp subgap Andreev peaks of the differential resistance, as
signatures of the antiferromagnetic resonance (the magnon mass gap). A critical
test of this theory is proposed. The tunneling charge, as measured by shot
noise, should change by increments of Delta Q= 2e at the Andreev peaks, rather
than by Delta Q=e as in conventional superconductors.Comment: 3 EPS figure