81,739 research outputs found
Decay Modes of the Hoyle State in
Recent experimental results give an upper limit less than 0.043\% (95\% C.L.)
to the direct decay of the Hoyle state into 3 respect to the sequential
decay into {Be}+. We performed one and two-dimensional tunneling
calculations to estimate such a ratio and found it to be more than one order of
magnitude smaller than experiment depending on the range of the nuclear force.
This is within high statistics experimental capabilities. Our results can also
be tested by measuring the decay modes of high excitation energy states of
C where the ratio of direct to sequential decay might reach 10\% at
(C)=10.3 MeV. The link between a Bose Einstein Condensate (BEC) and
the direct decay of the Hoyle state is also addressed. We discuss a
hypothetical `Efimov state' at (C)=7.458 MeV, which would mainly
{\it sequentially} decay with 3 of {\it equal energies}: a
counterintuitive result of tunneling. Such a state, if it would exist, is at
least 8 orders of magnitude less probable than the Hoyle's, thus below the
sensitivity of recent and past experiments.Comment: 6 pages, 2 figures, accepted by Phys. Lett.
ETEA: A euclidean minimum spanning tree-Based evolutionary algorithm for multiobjective optimization
© the Massachusetts Institute of TechnologyAbstract The Euclidean minimum spanning tree (EMST), widely used in a variety of domains, is a minimum spanning tree of a set of points in the space, where the edge weight between each pair of points is their Euclidean distance. Since the generation of an EMST is entirely determined by the Euclidean distance between solutions (points), the properties of EMSTs have a close relation with the distribution and position information of solutions. This paper explores the properties of EMSTs and proposes an EMST-based Evolutionary Algorithm (ETEA) to solve multiobjective optimization problems (MOPs). Unlike most EMO algorithms that focus on the Pareto dominance relation, the proposed algorithm mainly considers distance-based measures to evaluate and compare individuals during the evolutionary search. Specifically in ETEA, four strategies are introduced: 1) An EMST-based crowding distance (ETCD) is presented to estimate the density of individuals in the population; 2) A distance comparison approach incorporating ETCD is used to assign the fitness value for individuals; 3) A fitness adjustment technique is designed to avoid the partial overcrowding in environmental selection; 4) Three diversity indicators-the minimum edge, degree, and ETCD-with regard to EMSTs are applied to determine the survival of individuals in archive truncation. From a series of extensive experiments on 32 test instances with different characteristics, ETEA is found to be competitive against five state-of-the-art algorithms and its predecessor in providing a good balance among convergence, uniformity, and spread.Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom under
Grant EP/K001310/1, and the National Natural Science Foundation of China under Grant 61070088
Superluminal Caustics of Close, Rapidly-Rotating Binary Microlenses
The two outer triangular caustics (regions of infinite magnification) of a
close binary microlens move much faster than the components of the binary
themselves, and can even exceed the speed of light. When , where
is the caustic speed, the usual formalism for calculating the lens
magnification breaks down. We develop a new formalism that makes use of the
gravitational analog of the Li\'enard-Wiechert potential. We find that as the
binary speeds up, the caustics undergo several related changes: First, their
position in space drifts. Second, they rotate about their own axes so that they
no longer have a cusp facing the binary center of mass. Third, they grow larger
and dramatically so for . Fourth, they grow weaker roughly in
proportion to their increasing size. Superluminal caustic-crossing events are
probably not uncommon, but they are difficult to observe.Comment: 12 pages, 7 ps figures, submitted to Ap
Distributed coherent manipulation of qutrits by virtual excitation processes
We propose a scheme for the deterministic coherent manipulation of two atomic
qutrits, trapped in separate cavities coupled through a short optical fibre or
optical resonator. We study such a system in the regime of dispersive
atom-field interactions, where the dynamics of atoms, cavities and fibre
operates through virtual population of both the atomic excited states and
photonic states in the cavities and fibre. We show that the resulting effective
dynamics allows for the creation of robust qutrit entanglement, and thoroughly
investigate the influence of imperfections and dissipation, due to atomic
spontaneous emission and photon leakage, on the entanglement of the two qutrits
state.Comment: 15 pages, 4 figure
Achieving control of in-plane elastic waves
We derive the elastic properties of a cylindrical cloak for in-plane coupled
shear and pressure waves. The cloak is characterized by a rank 4 elasticity
tensor with 16 spatially varying entries which are deduced from a geometric
transform. Remarkably, the Navier equations retain their form under this
transform, which is generally untrue [Milton et al., New J. Phys. 8, 248
(2006)]. We numerically check that clamped and freely vibrating obstacles
located inside the neutral region are cloaked disrespectful of the frequency
and the polarization of an incoming elastic wave.Comment: 9 pages, 4 figure
Dicke-like quantum phase transition and vacuum entanglement with two coupled atomic ensembles
We study the coherent cooperative phenomena of the system composed of two
interacting atomic ensembles in the thermodynamic limit. Remarkably, the system
exhibits the Dicke-like quantum phase transition and entanglement behavior
although the governing Hamiltonian is fundamentally different from the
spin-boson Dicke Hamiltonian, offering the opportunity for investigating
collective matter-light dynamics with pure matter waves. The model can be
realized with two Bose-Einstein condensates or atomic ensembles trapped in two
optical cavities coupled to each other. The interaction between the two
separate samples is induced by virtual photon exchange
Dynamics of two atoms coupled to a cavity field
We investigate the interaction of two two-level atoms with a single mode
cavity field. One of the atoms is exactly at resonance with the field, while
the other is well far from resonance and hence is treated in the dispersive
limit. We find that the presence of the non-resonant atom produces a shift in
the Rabi frequency of the resonant atom, as if it was detuned from the field.
We focus on the discussion of the evolution of the state purity of each atom.Comment: LaTex, 2 figure
- …