51 research outputs found

    Effects of yeast culture on broiler growth performance, nutrient digestibility and caecal microbiota

    Get PDF
    This study was conducted to evaluate the effects of yeast culture (YC) supplementation on the growth performance, apparent nutrient digestibility and caecal microflora of broiler chickens. A total of 360 one-day-old Arbor Acres broiler chickens were randomly assigned to six dietary treatments containing 0.2%, 0.4%, 0.6%, 0.8% and 1% YC. The experiment lasted for 42 days. Diet and faecal samples were collected for analysis of dry matter, crude protein, ether extract, calcium and phosphorus. Caecal microbiota on days 21 and 42 were measured using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and real-time PCR. Dietary supplementation with YC did not affect feed intake. On day 42, the 0.8% YC group showed optimal growth and feed efficiency, as well as higher levels of apparent digestibility of ether extract, calcium and phosphorus. On day 21, both 0.8% and 1% YC groups exhibited a significant increase in Ruminococcus, Propionibacterium clostridiales, and Bifidobacterium density. The density of Bacteroides in the YC groups was significantly higher than that of the control group. On day 42, the densities of Bacteroides, Sphingomonas and Bifidobacterium were higher in the 0.8% YC group, whereas a significant decrease was observed in the number of Enterobacteriaceae. These results serve as evidence that dietary supplementation with 0.8% YC not only moderately optimized the feed efficiency and the apparent digestibility of ether extract, calcium and phosphorus, but also positively influenced the caecal bacterial density and diversity in broiler chickens.Keywords: Arbor Acres broiler, caecal microflora, yeast culture supplementatio

    Effects of different probiotics on the gut microbiome and metabolites in the serum and caecum of weaning piglets

    Get PDF
    The objective of the study was to determine the effects of antibiotics, yeast culture (YC), and Lactobacillus culture (LC) on the gut microbiome and metabolites in the serum and caecum of weaning piglets. Twenty-four weaning piglets were divided into four treatment groups: control, antibiotic (1% chlortetracycline), 1.8% yeast culture (YC), and 1.6% Lactobacillus culture groups (LC). Each group had six replicated pens with one pig per pen. Feed and water were available ad libitum. Dietary supplementation with antibiotics, YC and LC increased the abundance of phylum, Firmicutes, and decreased the abundance of phylum, Proteobacteria. Beneficial bacteria such as Lactobacillus and Megasphaera in YC and LC groups increased, whereas the proportion of Shigella was decreased. Genera Alloprevotella and Lachnospira were biomarkers in the control and antibiotic groups, respectively. Phylum, Bacteroidetes, and genus, Collinsella, were biomarkers in the YC group, and Mitsuokella, Anaerotruncus, Syntrophococcus and Sharpea were biomarkers in the LC group. Dietary supplementation with different probiotics changed the serum and caecum metabolite profiles too. Antibiotic supplementation increased the levels of D-mannose, D-glucose, and hexadecanoic acid in the serum, and the levels of myo-inositol, D-mannose and benzenepropanoic acid in the caecum. LC increased the concentrations of D-mannose, cis-9-hexadecenoic acid and heptadecanoic acid in caecum compared with the control group. YC and LC supplementation in the weaning diet could improve the abundance of beneficial bacteria by changing the concentrations of some metabolites in the serum and caecum. Therefore, dietary supplementation with YC or LC could be used as additives instead of antibiotics in weaning piglets.Keywords: antibiotic; lactobacillus culture; yeast culture; high-throughput sequencing; gas chromatography mass spectrometr

    Flexural strengthening of reinforced concrete beams using fabric reinforced Alkali-Activated Slag matrix

    Get PDF
    Old Reinforced Concrete (RC) buildings are facing different degrees of structural deterioration and require proper strengthening to enhance their structural performance as well as to extend their life span. Fabric reinforced Alkali-Activated Slag (AAS) matrix is proposed to strengthen RC beams in this study. Seven RC beams with and without strengthening were prepared and tested under four-point bending. Test results indicate that use of AAS matrix as replacement for conventional cement-based matrix can change the failure mode of the strengthened beams from end-debonding of strengthening layer to slippage combined with rupture of fabric. The AAS-based strengthening strategy is able to enhance the loading capacity and flexural stiffness of RC beams as well as to reduce the strain of tensile reinforcements. Except the specimens failed in the premature debonding, increasing the fabric amount in the strengthening scheme improves the loading capacity of beams. In an optimal case, the yielding and ultimate loads of the strengthened beams are enhanced by 22.2% and 26.4%, respectively. Moreover, an analytical model was developed to predict the characteristic loads of the fabric reinforced AAS matrix strengthened beams. It shows that the analytical model could overestimate the yielding and ultimate loads of the strengthened beams, probably due to slippage and reduced synergistic effect of fabric bundles in the strengthening system. Based on that, two efficiency factors of 0.35 and 0.25, taking account of the area of effective fabric, are obtained and recommended to estimate the yielding and ultimate loads of fabric reinforced AAS matrix-strengthened beams, respectively

    Proximity effect at superconducting Sn-Bi2Se3 interface

    Get PDF
    We have investigated the conductance spectra of Sn-Bi2Se3 interface junctions down to 250 mK and in different magnetic fields. A number of conductance anomalies were observed below the superconducting transition temperature of Sn, including a small gap different from that of Sn, and a zero-bias conductance peak growing up at lower temperatures. We discussed the possible origins of the smaller gap and the zero-bias conductance peak. These phenomena support that a proximity-effect-induced chiral superconducting phase is formed at the interface between the superconducting Sn and the strong spin-orbit coupling material Bi2Se3.Comment: 7 pages, 8 figure
    corecore