68 research outputs found

    Spatial Distribution of Glomalin-related Soil Proteins in Coniferous and Broadleaf mixed Temperate Forest

    Get PDF
    Glomalin-related soil protein (GRSP), as an important component of soil organic carbon (SOC) pool, is a glycoprotein produced by the hyphae of arbuscular mycorrhizal fungi (AMF), which play a vital role in carbon and nutrient cycling in forest ecosystem. Here we investigated the spatial distribution of GRSP in plant community of the dominated species not associated with AMF based on a typical coniferous and broad-leaved temperate forest in Mt. Changbai, Northeastern China. Spatial distribution of GRSP including easily extractable GRSP (EEG) and total GRSP (TG) is represented by Moran’s I on different soil depth among seven soil layers of 0-5 cm, 5-10 cm, 10-20 cm, 20-30 cm, 30-50 cm, 50-70 cm and 70-100 cm. The concentrations of EEG and TG decreased with the increase of soil depth according to a logarithmic function. The Moran’s I coefficient of GRSP was negative in all soil layers except TG in 20-30 cm and 50-70 cm soil layers. When EEG and TG were considered, the Moran’s I coefficient was positive in majority of soil layers within the separation distance of less than 4 m but in soil layers of 10-20 cm and 20-30 cm for EEG and in 30-50 cm for TG. The largest Moran’s I coefficient including EEG and TG was observed in the soil layer of 5-10 cm. The spatial distribution of GRSP was discrete in typical coniferous and broad-leaved temperate forest, and was affected by mycorrhizal colonization rate, soil organic carbon and total nitrogen

    Stratospheric PULSE–continental cold air outbreak coupling relationships: Interannual and interdecadal changes

    Get PDF
    Stratospheric processes and their role in weather and climate have attracted increasing interests. The correspondence between the occurrence of pulse-like, stronger stratospheric poleward warm airmass transport (PULSE) events and the continental-scale cold air outbreak (CAO) events in northern hemispheric winter is found to be unstable from year to year. This increases the difficulties in utilizing the more predictable stratospheric variability in the sub-seasonal forecasts of CAOs, which can cause cold hazards. Using the ERA5 reanalysis data covering 37 winters (November–March) in the period 1979–2015, this study categorizes the CAO events over mid-latitudes of Eurasia (CAO_EA) and those over North America (CAO_NA) into two groups: those coupled with and those decoupled with the PULSE events. The coupled CAOs are further categorized into events that are, respectively, lead-coupled and lag-coupled with PULSEs. The intensity and affected area of extremely cold temperatures tend to be larger during CAOs that are coupled with PULSEs, particularly during the CAO_NA events that are lag-coupled with PULSEs and the CAO_EA events that are lead-coupled with PULSEs. Remarkable interannual and interdecadal variations are observed in the percentage of CAOs that are coupled with PULSEs for each winter, which is an important reference for determining the window of opportunity for skillful sub-seasonal forecasts of CAO by using the stratospheric signals. At both interdecadal and interannual timescales, a warm phase of the El Niño–Southern Oscillation (ENSO) in winter is favorable for the higher lag-coupling rate of CAO_NA and the lead-coupling rate of CAO_EA, and vice versa. The ENSO signals related to the interdecadal changes of the CAO coupling rate in winter can be traced back to the previous winter, while an ENSO phase transition from the previous winter to the current winter is closely related to the interannual changes of the CAO coupling rate

    Role of tungsten doping on the surface states in BiVO4 photoanodes for water oxidation: tuning the electron trapping process

    Get PDF
    The nanostructured BiVO4 photoanodes were prepared by electrospinning and were further characterized by XRD, SEM, and XPS, confirming the bulk and surface modification of the electrodes attained by W addition. The role of surface states (SS) during water oxidation for the as-prepared photoanodes was investigated by using electrochemical, photoelectrochemical, and impedance spectroscopy measurements. An optimum 2% doping is observed in voltammetric measurements with the highest photocurrent density at 1.23 VRHE under back side illumination. It has been found that a high PEC performance requires an optimum ratio of density of surface states (NSS) with respect to the charge donor density (Nd), to give both good conductivity and enough surface reactive sites. The optimum doping (2%) shows the highest Nd and SS concentration, which leads to the high film conductivity and reactive sites. The reason for SS acting as reaction sites (i-SS) is suggested to be the reversible redox process of V5+/V4+ in semiconductor bulk to form water oxidation intermediates through the electron trapping process. Otherwise, the irreversible surface reductive reaction of VO2+ to VO2+ though the electron trapping process raises the surface recombination. W doping does have an effect on the surface properties of the BiVO4 electrode. It can tune the electron trapping process to obtain a high concentration of i-SS and less surface recombination. This work gives a further understanding for the enhancement of PEC performance caused by W doping in the field of charge transfer at the semiconductor/electrolyte interface.Peer ReviewedPostprint (author's final draft

    Deletion of scavenger receptor A protects mice from progressive nephropathy independent of lipid control during diet-induced hyperlipidemia

    Get PDF
    Scavenger receptor A (SR-A) is a key transmembrane receptor in the endocytosis of lipids and contributes to the pathogenesis of atherosclerosis. To assess its role in hyperlipidemic chronic kidney disease, wild-type and SR-A-deficient (knockout) mice underwent uninephrectomy followed by either normal or high-fat diet. After 16 weeks of diet intervention, hyperlipidemic wild-type mice presented characteristic features of progressive nephropathy: albuminuria, renal fibrosis, and overexpression of transforming growth factor (TGF)-β1/Smad. These changes were markedly diminished in hyperlipidemic knockout mice and attributed to reduced renal lipid retention, oxidative stress, and CD11c+ cell infiltration. In vitro, overexpression of SR-A augmented monocyte chemoattractant protein-1 release and TGF-β1/Smad activation in HK-2 cells exposed to oxidized low-density lipoprotein. SR-A knockdown prevented lipid-induced cell injury. Moreover, wild-type to knockout bone marrow transplantation resulted in renal fibrosis in uninephrectomized mice following 16 weeks of the high-fat diet. In contrast, knockout to wild-type bone marrow transplantation led to markedly reduced albuminuria, CD11c+ cell infiltration, and renal fibrosis compared to wild-type to SR-A knockout or wild-type to wild-type bone marrow transplanted mice, without difference in plasma lipid levels. Thus, SR-A on circulating leukocytes rather than resident renal cells predominantly mediates lipid-induced kidney injury

    Data 1 and Data 2

    No full text
    Mycorrhizal Types Modulate Responses of Global Soil Microbial Biomass to Environments Across Varied Land Use Types</p

    Arbuscular Mycorrhiza Enhances Biomass Production and Salt Tolerance of Sweet Sorghum

    No full text
    Arbuscular mycorrhizal (AM) fungi (AMF) are widely known to form a symbiosis with most higher plants and enhance plant adaptation to a series of environmental stresses. Sweet sorghum (Sorghum bicolor (L.) Moench) is considered a promising alternative feedstock for bioalcohol production because of its sugar-rich stalk and high biomass. However, little is known of AMF benefit for biomass production and salt tolerance of sweet sorghum. Here, we investigated the effects of Acaulospora mellea ZZ on growth and salt tolerance in two sweet sorghum cultivars (Liaotian5 and Yajin2) under different NaCl addition levels (0, 0.5, 1, 2, and 3 g NaCl/kg soil). Results showed AMF colonized the two cultivars well under all NaCl addition levels. NaCl addition increased mycorrhizal colonization rates in Yajin2, but the effects on Liaotian5 ranged from stimulatory at 0.5 and 1 g/kg to insignificant at 2 g/kg, and even inhibitory at 3 g/kg. High NaCl addition levels produced negative effects on both AM and non-AM plants, leading to lower biomass production, poorer mineral nutrition (N, P, K), higher Na+ uptake, and lower soluble sugar content in leaves. Compared with non-AM plants, AM plants of both cultivars had improved plant biomass and mineral uptake, as well as higher K+/Na+ ratio, but only Yajin2 plants had a low shoot/root Na ratio. AM inoculation increased the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and soluble sugar content in leaves. Overall, both cultivars benefited from mycorrhization, and Yajin2 with less salt tolerance showed higher mycorrhizal response. In conclusion, AMF could help to alleviate the negative effects caused by salinity, and thus showed potential in biomass production of sweet sorghum in saline soil

    Datasets: Mycorrhizal Types Modulate Responses of Global Soil Microbial Biomass to Environments Across Varied Land Use Types

    No full text
    The dataset comprises both the original data utilized in this manuscript and the curated list of papers chosen for the meta-analysis.</p
    • …
    corecore