981 research outputs found

    Pair production of 125 GeV Higgs boson in the SM extension with color-octet scalars at the LHC

    Get PDF
    Although the Higgs boson mass and single production rate have been determined more or less precisely, its other properties may deviate significantly from its predictions in the standard model (SM) due to the uncertainty of Higgs data. In this work we study the Higgs pair production at the LHC in the Manohar-Wise model, which extends the SM by one family of color-octet and isospin-doublet scalars. We first scanned over the parameter space of the Manohar-Wise model considering exprimental constraints and performed fits in the model to the latest Higgs data by using the ATLAS and CMS data separately. Then we calculated the Higgs pair production rate and investigated the potential of its discovery at the LHC14. We conclude that: (i) Under current constrains including Higgs data after Run I of the LHC, the cross section of Higgs pair production in the Manohar-Wise model can be enhanced up to even 10310^3 times prediction in the SM. (ii) Moreover, the sizable enhancement comes from the contributions of the CP-odd color-octet scalar SIAS^A_I. For lighter scalar SIAS^A_I and larger values of λI|\lambda_I|, the cross section of Higgs pair production can be much larger. (iii) After running again of LHC at 14 TeV, most of the parameter spaces in the Manohar-Wise model can be test. For an integrated luminosity of 100 fb1^{-1} at the LHC14, when the normalized ratio R=10R=10, the process of Higgs pair production can be detected.Comment: 13 pages, 4 figure

    Beating the Uncertainties: Ensemble Forecasting and Ensemble-Based Data Assimilation in Modern Numerical Weather Prediction

    Get PDF
    Accurate numerical weather forecasting is of great importance. Due to inadequate observations, our limited understanding of the physical processes of the atmosphere, and the chaotic nature of atmospheric flow, uncertainties always exist in modern numerical weather prediction (NWP). Recent developments in ensemble forecasting and ensemble-based data assimilation have proved that there are promising ways to beat the forecast uncertainties in NWP. This paper gives a brief overview of fundamental problems and recent progress associated with ensemble forecasting and ensemble-based data assimilation. The usefulness of these methods in improving high-impact weather forecasting is also discussed

    A feature based frequency domain analysis algorithm for fault detection of induction motors

    Get PDF
    10.1109/ICIEA.2011.5975545Proceedings of the 2011 6th IEEE Conference on Industrial Electronics and Applications, ICIEA 201127-3

    Restricted independence in displacement function for better estimation of cyclicity

    Get PDF
    Agraïments: The author is partially supported by NSFC grant #11471228 (X. Chen), NSFC grant # 11501083 (Z. Wang), and NSFC grants # 11231001 and # 11221101 (W. Zhang).Since the independence of focal values is a sufficient condition to give a number of limit cycles arising from a center-focus equilibrium, in this paper we consider a restricted independence to a parametric curve, which gives a method not only to increase the lower bound for the cyclicity of the center-focus equilibrium but also to be available when those focal values are not independent. We apply the method to a nondegenerate cubic center-focus variety and prove that the cyclicity reaches its an upper bound

    A Bayesian regression tree approach to identify the effect of nanoparticles' properties on toxicity profiles

    Full text link
    We introduce a Bayesian multiple regression tree model to characterize relationships between physico-chemical properties of nanoparticles and their in-vitro toxicity over multiple doses and times of exposure. Unlike conventional models that rely on data summaries, our model solves the low sample size issue and avoids arbitrary loss of information by combining all measurements from a general exposure experiment across doses, times of exposure, and replicates. The proposed technique integrates Bayesian trees for modeling threshold effects and interactions, and penalized B-splines for dose- and time-response surface smoothing. The resulting posterior distribution is sampled by Markov Chain Monte Carlo. This method allows for inference on a number of quantities of potential interest to substantive nanotoxicology, such as the importance of physico-chemical properties and their marginal effect on toxicity. We illustrate the application of our method to the analysis of a library of 24 nano metal oxides.Comment: Published at http://dx.doi.org/10.1214/14-AOAS797 in the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Secondary frequency stochastic optimal control in independent microgrids with virtual synchronous generator-controlled energy storage systems

    Get PDF
    With the increasing proportion of renewable energy in microgrids (MGs), its stochastic fluctuation of output power has posed challenges to system safety and operation, especially frequency stability. Virtual synchronous generator (VSG) technology, as one effective method, was used to smoothen frequency fluctuation and improve the system’s dynamic performance, which can simulate the inertia and damping of the traditional synchronous generator. This study outlines the integration of VSG-controlled energy storage systems (ESSs) and traditional synchronous generators so they jointly participate in secondary frequency regulation in an independent MG. Firstly, a new uncertain state-space model for secondary frequency control is established, considering the measurement noises and modelling error. Then, an improved linear quadratic Gaussian (LQG) controller is designed based on stochastic optimal control theory, in which the dynamic performance index weighting matrices are optimized by combining loop transfer recovery (LTR) technology and the distribution estimation algorithm. On the issue of secondary frequency devices’ output power allocation, the dynamic participation factors based on the ESS’s current state of charge (SOC) are proposed to prevent the batteries’ overcharging and overdischarging problems. The energy storage devices’ service life can be prolonged and OPEX (operational expenditure) decreased. Multiple experimental scenarios with real parameters of MGs are employed to evaluate the performance of the proposed algorithm. The results show that, compared with the lead-compensated-proportional-integral-derivative (LC-PID) control and robust μ-control algorithms, the proposed stochastic optimal control method has a faster dynamic response and is more robust, and the fluctuations from renewable energy and power loads can be smoothened more effectively
    corecore