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Accurate numerical weather forecasting is of great importance. Due to inadequate observations, our limited understanding of the
physical processes of the atmosphere, and the chaotic nature of atmospheric flow, uncertainties always exist in modern numerical
weather prediction (NWP). Recent developments in ensemble forecasting and ensemble-based data assimilation have proved that
there are promising ways to beat the forecast uncertainties in NWP. This paper gives a brief overview of fundamental problems
and recent progress associated with ensemble forecasting and ensemble-based data assimilation. The usefulness of these methods
in improving high-impact weather forecasting is also discussed.

1. Introduction

Numerical weather prediction (NWP) is an initial value
problem: it forecasts the atmospheric state by integrating a
numerical model with given initial conditions. Commonly,
two fundamental factors account for an accurate numerical
weather forecast: (1) the present state of the atmosphere
must be characterized as accurately as possible; (2) the
intrinsic laws, according to which the subsequent states
develop out of the preceding ones, must be known [1]. These
so-called laws are composed of a set of partial differential
equations, including the laws of momentum, mass, and
energy conservations.

Since the first successful NWP in early 1950s by Charney
et al. [2], much progress has been made in enhancing the
skill of NWP. These include efforts in improving initial
conditions through advances in observing systems and the
development of atmospheric data assimilation techniques.
Many studies also devoted to improve numerical modeling
with advanced numerical methods, better representation
of dynamics processes of the atmosphere, and improved
physical parameterization schemes [3–5]. Today, NWP has
become a major forecasting tool in many operational centers
around the world.

However, due to inadequate observations, our limited
understanding of the physical processes of the atmosphere,
and the chaotic nature of the atmospheric flow, uncertainties
always exist in both initial conditions and numerical models.
Thus, reducing forecast errors caused by theses uncertainties
remains a large area of research and operational implemen-
tation.

Recent developments have proved that ensemble fore-
casting and ensemble-based data assimilation are promis-
ing ways to beat the forecast uncertainties in NWP. The
objective of this paper is to give a brief overview of the
fundamental problems and recent progress associated with
ensemble forecasting and ensemble-based data assimilation.
The usefulness of these methods in improving high-impact
weather forecasting is also discussed.

The paper is organized as follow. Section 2 addresses
the fundamental concepts of atmospheric predictability;
Section 3 introduces stochastic theory and ensemble weather
forecasting; Section 4 describes the Bayes theorem and
ensemble Kalman filtering data assimilation; Section 5
addresses the implementation and practical issues associated
with the ensemble Kalman filter; Section 6 briefly sum-
marizes current applications of ensemble forecasting and
ensemble-based data assimilation methods on high-impact
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weather prediction; and a summary and concluding remarks
are presented in Section 7.

2. Forecast Uncertainties and Predictability

2.1. Predictability. Predictability refers to the extent to which
the future state of the atmosphere or a specific weather
system may be predicted based on current ability of NWP.
Corresponding to the aforementioned two fundamental
factors that influence the numerical forecast, there are two
kinds of predictabilities as addressed by Lorenz in [6]: (1)
attainable predictability, which is limited by the inaccuracy of
measurement and (2) practical predictability that is limited
by our inability to express the precise equations of the
atmosphere motion and physical processes in the numerical
model. The errors in measurement include instrumental
errors and errors due to interpolation over regions where
there are no measurements at all. These errors can be
decreased by enlarging our network of observation stations
and improving the techniques of interpolation or data
assimilation. Errors in model equations rely much on the
computational methods used to solve the equations and our
current ability to understand the physical processes, as well
as the model resolution to resolve these physical processes in
the numerical models.

2.2. The Unpredictable Nature of the Atmosphere. While
attainable and practical predictabilities are associated with
uncertainties in the initial conditions and imperfect models,
what would the predictability be if the model (dynamical
and physical processes) is perfect and the initial conditions
are accurate? Lorenz [6, 7] asserted that the atmosphere, as
a kind of unstable dynamical system, has a finite limit of
predictability depending upon a particular flow. As is well
known, Lorenz [6] found that a slight departure in initial
conditions would evolve into totally different atmospheric
states in the numerical forecasts regardless of how small the
errors in the initial conditions were.

The chaotic nature of the atmosphere determines that
the predictability of the model depends upon not only the
realism of the model and the accuracy of initial conditions
but also the system itself. Atmospheric motion, as a nonlinear
dynamic system, is supposed to have finite limit predictabil-
ity. The stochastic characteristics account for the extent to
which the atmosphere could be predicted. The number of
days we can forecast accurately in advance is dependent upon
the evolution of the atmosphere.

Figure 1 shows the motion trajectories of stable and
unstable dynamic systems. In Figure 1(a), the trajectories
drift away from each other although the initial conditions
are very close; for Figure 1(b), the trajectories in a stable
system stay close to each other with time. This suggests that
the intrinsic predictability becomes completely impossible
for the unstable flow just as seen from Figure 1(a). Even two
very close initial conditions may result in markedly different
outcomes. Since we do not know the true atmospheric state,
we therefore have no idea about how to ascertain the true

value from those totally different forecast states. This brings
us a great challenge in numerical weather forecasting.

Figure 2 illustrates a real scenario in the Lorenz 63 model
[6]. Given a cloud of close initial states, the trajectories depart
from each other after the model was integrated forward only
10 seconds. This suggests, in a nonlinear system, that it is
almost impossible to predict even in which lobe the states
would be.

The uncertain properties of the atmospheric system call
for more suitable methods to represent the initial conditions
and forecast the atmospheric states, instead of the traditional
way that describes the initial values with the single analysis
best state and integrate the single best guess forward. This
will be illustrated in Sections 3 and 4.

3. The Stochastic Prediction and
Ensemble Forecasting

In view of the uncertain properties of the atmospheric
system, a theory of stochastic dynamic prediction is proposed
by Epstein [9]. In a stochastic context, the initial and forecast
states of the atmosphere are represented as probability
distributions. That is, the probability density function (PDF)
of the present model state should be estimated first according
to all the prior information and available observations; then,
a method for forecasting the evolution of this PDF forward in
time is needed. Based on the stochastic dynamic prediction,
it is possible to make the probabilistic forecasts in addition
to a deterministic forecast using a single model with single
initial conditions. Although early experiments by Epstein are
very different from the ensemble forecasting done today, the
theory of stochastic dynamic predictions offers a stepping
stone with which to develop ensemble forecasting.

The advance in parallel processing computers in
the early 1990s and improved operational forecasting
systems—improvements in both model physics and data
assimilation—has led to operational stochastic dynamic
prediction at the European Centre for Medium-Range
Weather Forecasts (ECMWF), U. S. National Centers for
Environmental Prediction (NCEP), and the Meteorologi-
cal Service of Canada (MSC) in the early 1990s. These
operational stochastic prediction systems are referred to as
ensemble forecasting systems. Instead of using only one
model with a single set of initial conditions, a group of
forecasts with slightly different initial conditions are made in
an ensemble forecast. The approach to ensemble prediction
used at operational centers exhibits subtle differences when
compared with the standard Monte Carlo method that was
used in the stochastic dynamic prediction. In Monte Carlo, it
is assumed that the initial probability density function (PDF)
is known and that it is sampled randomly. In most of the
methods used in current ensemble forecasting, the PDF is
generally not sampled in a random way. There are different
ways to generate the initial perturbations in the different
operational ensemble systems, including the following.

(i) Breeding of Growing Modes (BGM): Developed by
Toth and Kalnay [10, 11], the BGM scheme is
a simple and inexpensive method to generate the
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(a) (b)

Figure 1: The evolutions of slightly different initial states (a) unstable trajectories; (b) stable trajectories [courtesy of Lorenz (1963)].
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Figure 2: The evolutions of slightly different initial states in the
Lorenz-63 model. Red stars represent initial states; blue circles
represent states after 10 seconds. (The figure follows that of Palmer
in [8].)

initial perturbation. It eliminates the difference in
the growth rate of errors (growing modes) due
to convection or baroclinic instability. The BGM
consists of the following steps: (a) Add a small
arbitrary perturbation to the atmospheric analysis;
(b) integrate the model for 6 hours from both
the unperturbed (control) and the perturbed initial
condition; (c) subtract the 6-hour control forecast
from the perturbed forecast; (d) scale down the
difference field so that it has the same size (in RMS)
as the initial perturbation; and (e) repeat the above
process in time. Thus, the perturbation evolves along
with the time-dependant analysis fields, ensuring that
after a few days of cycling the perturbation field
consist of a superposition of fast-growing modes
corresponding to the contemporaneous atmosphere,
akin to local Lyapunov vectors.

(ii) A Singular vector (SV) method: ECWMF developed
and implemented the Singular Vector scheme [12,
13], which is based on the observation that perturba-
tions pointing along different axes of the phase space
of the system are characterized by different amplifica-
tion rates. Given an initial uncertainty, perturbations
along the directions of maximum growth amplify
more than those along other directions. For defining
the SVs in the ensemble prediction system, growth is
measured by a matrix based on the total energy norm.

The SVs are computed by solving an eigenvalue
problem, which is defined by an operator that is
a combination of the tangent forward and adjoint
model, integrated during a time period named the
optimization time interval. The advantage of using
singular vectors is that, if the forecast error evolves
linearly and the proper initial norm is used, the
resulting ensemble captures the largest amount of
forecast-error variance at optimization time [14].

(iii) A Perturbed-observation approach: The MSC
perturbed-observation approach attempts to obtain
a representative ensemble of perturbations by
comprehensively simulating the behavior of errors
in the forecasting system. The system is based on
an ensemble of data assimilation systems using
perturbed observations. Because the analysis and
forecast process is repeated several times with
different random input, the perturbed-observation
method is a classic example of the Monte Carlo
approach. Arguments for the use of nonselective,
purely random ensemble perturbations are presented
by Houtekamer et al. [15] and Anderson [16].

(iv) Ensemble transform Kalman filter (ETKF): It was
first introduced as an adaptive sampling method
[17]. The formulation of ETKF is based on the
application of a Kalman filter, with the forecast
and analysis covariance matrices being represented
by ensembles of forecast and analysis perturbations.
Thus, it produces analysis perturbations (initial per-
turbation for ensemble) in ensemble representation
based on the ensemble forecast from previous cycle
and observations. One argued that the ETKF is able
to make perturbations more independent and flow
dependent [18].

All of the methods discussed above only include per-
turbations in the initial conditions, assuming that the error
growth due to model deficiencies is small compared to
that due to unstable growth of initial errors. However, in
reality, uncertainties in model physical parameterizations
cannot be ignored in many cases. Therefore, in addition to
the aforementioned initial perturbation methods, ensemble
forecast systems have also been designed to account for
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model errors and model uncertainty. Current methods and
progress include the multimodel ensemble (see, e.g., [19,
20]), stochastic physical parameterizations (see, e.g., [21–
23]), nonlocal stochastic-dynamic parameterization schemes
[24], kinetic energy backscatter [25], performing ensemble
simulations with different time steps to study the impact
of model truncation error [26], and using different param-
eterizations within the ensemble prediction system [27].
Krishnamurti et al. [19] commented that the performance of
multimodel ensemble forecasts shows superior forecast skill
compared to all individual models used. Reynolds et al. [23]
illustrated that a stochastic convection scheme improves the
ensemble performance in the tropics.

Since ensemble forecasting takes account of the uncer-
tainties in NWP, it has major advantages over a single
deterministic forecast [28], like, for example, the following.

(i) It improves the forecasting skill by reducing the non-
linear error growth and averaging out unpredictable
components.

(ii) It predicts the skill, by relating it to the agreement
among ensemble forecast members. If the ensemble
forecasts are quite different from each other, it is clear
that at least some of them are wrong, whereas if there
is good agreement among the forecasts, there is more
reason to be confident about the forecast.

(iii) It provides an objective basis for forecasts in a
probabilistic form. In a chaotic system such as the
atmosphere, probabilistic information is recognized
as the optimum format for weather forecasts both
from a scientific and a user perspective.

In addition, ensemble forecasts also show the potential
value in a new area of research, such as targeted weather
observations (see, e.g., [29]) and data assimilation (see next
section)..

4. Bayes Theorem and Ensemble-based
Data Assimilation

As mentioned in the previous section, uncertainties of the
initial conditions are the major source of error in NWP. Thus,
improved data assimilation techniques will be useful to beat
the uncertainties in the initial conditions. We continue this
subject with the stochastic dynamic prediction.

4.1. Bayes Theorem of Data Assimilation. In a stochastic
context, the initial and forecast states of the atmosphere are
represented as probability distributions. Therefore, the prob-
ability density function of the present model state should
be estimated first according to all the prior information and
available observations and then a method for forecasting the
evolution of this PDF forward in time is needed. Usually,
getting the current PDF is referred to Bayes data assimilation
theory [30, 31].
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Figure 3: The observations (red curve), prior (green curve), and
posterior (blue curve) probability density function given Gaussian
error [32].

In the application of data assimilation, Bayes’ theorem
can be expressed as

P(Xt | Yt) = P(Yt | Xt)P(Xt | Yt−1)
denominator

, (1)

where P(Xt | Yt) denotes the probability density of the model
state at time t; X and Y are the state variables; P(Yt | Xt)
denotes the probability density of the observations at time t;
and P(Xt | Yt−1) is viewed as a kind of prior and represents
the probability density of the prior ensemble forecast at
time t. The denominator is a kind of normalization for
guaranteeing that the total probability of all possible states
is 1.

As shown above, (1) describes the way in which new
observations are incorporated to modify the prior condi-
tional probability density available from predictions based on
earlier observations.

Taking an example, for Gaussian probability density, the
prior is

P(Xt | Yt−1) = Normal
(
μp, σp

)
, (2)

where μ and σ are the mean and standard deviations,
respectively. The subscript “p” denotes the “prior” state.

The observation PDF is given as

P(Yt | Xt) = Normal
(
μo, σo

)
, (3)

where the Gaussian probability density function given the
mean μ and standard derivation error σ is

P
(
μ, σ2) = 1√

2πσ2
e−(x−μ)2/2σ2

. (4)

Divide the product (named P′ temporarily) of P(Yt | Xt)
times P(Xt | Yt−1) by a normalization denominator gives the
posterior PDF as shown in Figure 3.
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Figure 4: Monte Carlo forecast with finite sample.

After the above processes, we get the posterior estimate:

P(Xt | Yt) = Normal
(
μu, σ2

u

)
. (5)

Here

σ2
u =

(
σ−2
p + σ−2

o

)−1
,

μu = σ2
u

[
σ−2
p μp + σ−2

o μ0

]
.

(6)

4.2. Monte Carlo Method. Although we can solve for the
posterior PDF in the previous section, it is not easy to express
the PDF of the observations and the prior information
explicitly in real operational numerical implementation.
Therefore, it is difficult to obtain the posterior PDF of initial
conditions directly from Bayes theorem.

Fortunately, the implementation of the Monte Carlo
method provided us an effective approach to simulate the
desired PDF with a random sample and to some extent
solve the uncertainties of the initial conditions. However,
the Monte Carlo method was conditionally effective only
under an assumption that the number of sample members
is sufficiently large in order to represent the PDF suitably.
Consequently, the difficulty comes with the “large sample.”
For instance, for a common real model with 107 degree of
freedom, a 107∗107 dimension calculation for estimating the
PDF will be involved. That is demanding considering even
the most recent computational advances.

Figure 4 shows schematically the forecast results under
conditions when there are too few sample members doing
the estimating. The mean forecast drifts away from the truth
with time.

4.3. Ensemble Kalman Filter. Considering the limitations of
traditional Bayes and Monte Carlo methods, a more practical
technique is needed. With the most recent developments,
ensemble Kalman filter data assimilation techniques, origi-
nated from the basic idea of the Monte Carlo theory and the
well-known Kalman filter method, are successfully applied in
many research and operational practices.

4.3.1. Basic Equations of Kalman Filter. As a sequential data
assimilation method, the implementation of the Kalman
filter [5, 33–35] includes two steps, which are named a
forecast step and an analysis step. The model is integrated
forward with time and used to update the model state
by assimilating new observations when observations are
available.

Kalman filter assumes that the prior conditional proba-
bility distribution is Gaussian and expresses it with its mean
and covariance.

The analysis equation is

Xa = X f + P f HT
(
HP f HT + R

)−1(
d −HX f

)
, (7)

where Xa is the analysis variables, X f is the background
fields (prior estimate), and d denotes observations. H , called
the observational operator, connects the true state with
observations within particular measurement errors:

d = HXt + ε. (8)

K is the so-called gain matrix:

K = P f HT
(
HP f HT + R

)−1
. (9)

In an extended Kalman filter, one must integrate the
linear tangent model Li−1 in each forecast step to evolve the
flow dependent forecast error covariance P f (ti):

P f (ti) = Li−1P
aLTi−1, (10)

where the analysis error covariance is given as

Pa = P f − P f HT
(
HP f HT + R

)−1
HP f . (11)

Equations (9) and (10) perform as forecast step and (11)
and (7) as the analysis step.

4.3.2. Ensemble Kalman Filter Theory. There are two main
drawbacks of the extended Kalman filter method [36, 37].
One is that the simplified closure scheme used for estimating
the error covariance results in an unbounded error growth
while neglecting the third- and higher-order terms in the
apparent closure scheme. Another is that Kalman filter poses
an expensive cost due to the computational requirement of
the error covariance matrix for the model forecast. From
the previous Section 4.3.1, it is known that extended Kalman
filter requires integrating the tangent linear model forward
to get the error covariance estimation and hence expensive
computational cost.

In theory, the error covariance of forecast estimation
(background) is defined as:

P f = (X f − Xt
)(
X f − Xt

)T
. (12)

However, we never know the true atmosphere state
(Xt). This makes the estimation of the background error
covariance very difficult.
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From Section 3, we have already learned that the ensem-
ble mean could be the best estimation of the true state. Using
this, the ensemble Kalman filter employs a group of ensemble
members to represent the covariance statistics of the analyzed
state. The ensemble is integrated in the nonlinear model to
get a sample of the prior distribution at the next time when
the observation is available as follows:

P f =
(
X

f
i − X

f
)(

X
f
i − X

f
)T

. (13)

Equation (13) indicates that a flow-dependent error
covariance of forecast estimation can be obtained by using
ensemble forecasting in practical implementation.

5. Implementation and Practical Issues on
Ensemble Kalman Filter

5.1. Implementation of Ensemble Kalman Filters. Since the
first attempt by Evensen [37], ensemble Kalman filter
methods have been developed rapidly and used widely in
data assimilation applications. There are two classes of
basic approaches, referred to as the method with perturbed
observations and the square root filter (without perturbed
observations), to implement the ensemble Kalman filter
as aforementioned. The perturbed observation algorithm
updates each ensemble member with a different set of obser-
vations perturbed with random noise. Because randomness
is introduced in every assimilation cycle, the update is
considered stochastic. The square root filter methods do
not add stochastic noise to the observations and are called
deterministic algorithms. Evensen [37], Evensen and Van
Leeuwen [38], as well as Houtekamer and Mitchell [39]
originally implemented the ensemble Kalman filter with
perturbed observations. Anderson [40], Bishop et al. [17],
Baek et al. [41], Corazza et al. [42], Hunt et al. [43], Miyoshi
and Yamane [44], Harlim and Hunt [45], as well as Yang
et al. [46] contributed various square root filter algorithms
including an ensemble adjustment Kalman filter [40], an
ensemble transform Kalman filter [17], a local ensemble
Kalman filter (for LEKF, see [41, 42]) and a local ensemble
transform Kalman filter (for LETKF, see [43–46]). Whitaker
and Hamill [47] indicated that the perturbed observations
approach might introduce another kind of sampling errors;
thus the square root algorithms methods are more accurate
for a given ensemble size.

5.2. Comparison of the Ensemble Kalman Filter with 4DVar.
Since the ensemble Kalman filter is becoming part of the
operational choice, progress has been made to compare it
with advanced data assimilation methods that are currently
available. Specifically, a four-dimensional variational data
assimilation (4DVar) method has been widely adopted
in operational centers around the world. Owing to its
capability in assimilating asynchronous observations and
high-resolution observations such as satellite radiance and
radar reflectivity, 4DVar method is indeed helpful for
improving current numerical forecasting [48–50]. However,
the requirement of the tangent linear and adjoint models

made the 4DVar method complicated in its implementation.
Compared to 4DVar, the major merit of the ensemble
Kalman filter is its simplicity of implementation. It does not
need to develop and maintain tangent linear and adjoint
model. It is model independent. One can easily switch to
other models using ensemble methods [51, 52]. In addition,
the ensemble Kalman filter represents and forwards forecast
covariance using the ensemble sample without much effort.
The main disadvantage of the ensemble Kalman filter comes
with the sampling problem. The low ensemble size brings up
sampling errors in the estimation of the background error
covariance. The inflation tuning is employed to adjust this
sample error in the practice.

Fertig et al. [53] studied the performance of 4DVar
and 4D-LETKF in assimilating the asynchronous obser-
vations using the Lorenz 96 model [54]. Both schemes
have comparable error when 4D-LETKF is cycled frequently
and when 4DVar is performed over a sufficiently long
analysis time window. Yang et al. [55] explored the relative
advantages and disadvantages of the 4DVar and LEKF
using a quasigeostrophic model and asserted that LEKF
did better on both computational cost and accuracy when
assimilating the same rawinsonde observations. Buehner
et al. [56] evaluated the operational performance of both
methods in Environment Canada using the same model and
observations and obtained equivalent forecast scores. Kalnay
et al. [51] offered a comprehensive comparison between
4DVar and ensemble Kalman filter. Based on results obtained
using operational models and both simulated and real
observations, they concluded that currently the ensemble
Kalman filter is becoming competitive with 4DVar, and that
the experience acquired with each of these methods can be
used to improve the other.

In brief, due to its simple implementation and equivalent
ability compared to 4DVar, the ensemble Kalman filter is
becoming an attractive operational choice in more centers.
However, the current ability of the ensemble Kalman filter is
not equal to that of 4DVar in terms of assimilating satellite
and radar observations. In order to utilize advantages from
both methods, a hybrid approach, originally proposed by
Hamill and Snyder [57], has received significant attention.
Lorenc [52] asserted that hybrid approaches of variational
methods and ensemble methods would be better than either
single approach. Buehner et al. [56] showed that a hybrid
approach based on 4DVar but using forecast covariance
error estimation from the ensemble Kalman filter gave an
improvement in 5-day forecasts in the southern hemisphere.

From the results of current studies, the hybrid method
of the ensemble Kalman filter and 4DVar has a promising
future since it combines the advantages of both methods and
eliminates the existing disadvantages.

5.3. Nonlinear Issues in Ensemble Kalman Filter. Previous
studies have proven that ensemble Kalman filter is capable
of dealing with data assimilation in nonlinear system (e.g.
[58]). However, nonlinearity is still an important issue in the
implementation of ensemble Kalman filter. The equations
introduced in Section 4.3.2 are valid only when the error
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PDF are Gaussian. Unfortunately, in reality, even if the error
PDF were Gaussian at the initial time, it would be non-
Gaussian when the model is integrated forward due to the
strongly non-linear model. In the case, the PDFs of errors
cannot be represented by a Gaussian function. In addition,
it is operationally impossible to assume a non-Gaussian
error PDFs, although it looks feasible based on the current
ensemble.

There have been many studies devoted to dealing with
the nonlinear and non-Gaussian problem, mainly focusing
on the development and implementation of the ensemble
Kalman filter. For instance, Van Leeuwen [59] presented
a true variance minimizing filter method. Its performance
was tested by the Korteweg-DeVries equation and a quasi-
geostrophic model. He addressed that the method works
satisfactorily with a strongly nonlinear system. Hoteit et al.
[60] evaluated a new particle-type filter based on a Gaussian
mixture representation of the state PDFs using the Lorenz
96 model and discussed its application in real meteorological
and oceanographic models. Yang and kalnay [61] applied
the outer-loop in LETKF to handle the nonlinear problem
with the Lorenz 63 model. Results indicated that the LETKF
with outer-loop could use a longer assimilation window and
improve the analysis accuracy during highly nonlinear time
periods.

6. Applications of Ensemble Forecasting and
Ensemble Kalman Filters to High-Impact
Weather Prediction

Owing to their advantages in beating the uncertainties
and dealing with the nonlinearity, ensemble forecasting
and ensemble-based data assimilation have received a lot
of attention in the research and operational communities
during the last decade. Specifically, they have been applied
to high-impact weather forecasting. Many studies have
documented results from these applications. The ensemble
forecasting was used in short-range ensemble forecasting
(SREF) [62–67], tropical cyclone forecasts [68, 69], as well
as the flooding warning [70], and so forth. The ensemble-
based Kalman filtering techniques were also applied for the
studying and numerical simulation of hurricanes (see, e.g,.
[71]) and storm scale forecasts at high resolution (see, e.g.,
[72, 73]).

Du et al. [62] applied ensemble forecasting in quantita-
tive precipitation forecasting (QPF). They found a remark-
able reduction of root-mean-square error for QPF due to
the ensemble application and asserted that the improvements
from SREF techniques exceed the effect due to resolution
doubling. After a short-range ensemble forecasting system
was implemented in real-time operational at NCEP in 2001
[65], Du et al. [66] added another 6 members, which were
generated from a weather research and forecasting (WRF)
model, into the ensemble forecasting and obtained forecast
improvements with increased ensemble spreads. Yuan et al.
[67] studied the QPFs and probabilistic QPFs (PQPFs) over
the southwest United States, the area that is marked by highly
heterogeneous topography and diverse vegetation.

The hurricane track forecasting by Zhang and Krishna-
murti [68] showed that the ensemble forecasts are superior
to the results from single-model control experiments and
the track position errors are largely reduced by the ensem-
ble prediction. Mackey and Krishnamurti [70] combined
ensemble forecasts with a high-resolution regional spectral
model to postpredict the track, intensity, and flooding
precipitation arising from Typhoon Winnie in August, 1997.
They evaluated the effectiveness of the ensemble forecasting
and found that the ensemble mean track would be superior
only if the forecast uncertainty is properly sampled.

Zhang et al. [71] studied Hurricane Humberto (2007)
using the ensemble Kalman filter method for assimilating
Doppler radar radical velocity. Results indicated that the
ensemble Kalman filtering analysis improved the represen-
tation of the track and intensity of Humberto. Tong and
Xue [72] and Xue et al. [73] used the ensemble Kalman
filter method and radar reflectivity to correct errors in
fundamental microphysical parameters that are of great
importance to microphysics schemes. The results show that
the ensemble Kalman filter successfully corrected model
errors in microphysical parameters.

7. Concluding Remarks

NWP is an initial value problem: it forecasts the atmospheric
state by integrating a numerical model with given initial
conditions. Due to inadequate observations, our limited
understanding in physical processes of atmosphere, and the
chaotic nature of the atmospheric flow, uncertainties always
exist in modern NWP. Enhancing the predictability becomes
a key issue in improving the skill of NWP.

In this paper, the ensemble forecasting and ensemble-
based Kalman filter methods, both derived from concepts of
the stochastic prediction, are overviewed. It can be concluded
as follows.

(i) Atmospheric motion, as an unstable system, has a
finite predictability. NWP is strongly sensitive to the
initial conditions. Uncertainties in the model physical
parameterization also introduce errors into NWP.
Due to strong nonlinearity and chaotic nature of the
atmospheric flow, unpredictable components exist in
reality.

(ii) Ensemble forecasting takes uncertainties into account
in initial conditions and/or model physical parame-
terizations to help produce improved forecasts over
a single deterministic forecast in NWP and also
provide probabilistic forecasts.

(iii) The Ensemble Kalman filter refines the Monte
Carlo method and traditional Kalman filter. It uses
ensemble forecasts to express the flow-dependent
error covariance of the forecast estimation. Ensemble
Kalman filters present an effective way for data
assimilation to improve model initial conditions,
while at the same time also take uncertainties into
account.



8 Advances in Meteorology

Owing to their advantages in beating the uncertainties
and dealing with the nonlinearity in NWP, ensemble fore-
casting and ensemble-based data assimilation received a lot
of attention in the research and operational communities
during the last decade. Specifically, they have been applied
to improve high-impact weather forecasting.

However, there are issues outstanding. As the ensemble
forecasting requires large computational resources, many
operational ensemble systems were implemented in coarser
resolutions, compared with the high-resolution determinis-
tic weather prediction models. Meanwhile, the small size of
the ensemble could cause the underrepresentation problem
when generating the background covariance for ensemble-
based data assimilation. In addition, with perturbed initial
conditions and various physical parameterizations, ensemble
forecasts take into account both initial and model errors;
however, there has not yet been a consensus regarding which
one of these two methods is more efficient for accurate NWP
in general. Moreover, the ensemble Kalman filter has many
advantages over the current variational data assimilation
systems. However, so far, the use of the ensemble Kalman
filter in operational forecasts has been in a test phase. More
studies are needed to make it a more powerful tool for
assimilating real observations. In the meantime, a hybrid
variational and ensemble Kalman filter method could be a
promising technique in the near future.
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