193 research outputs found

    Performance Analysis of Doubly Excited Brushless Generator with Outer Rotor for Wind Power Application

    Get PDF
    In this paper, a novel doubly excited brushless generator (DEBG) with outer radial laminated magnetic barrier rotor (RLMB-rotor) for wind power application was designed and analyzed. The DEBG has 10 rotor pole numbers with outer rotor. Its performance was investigated using the 2D transient finite element method. The magnetic fields, torque capability, end winding voltage characteristics, radial magnetic force and energy efficiency were analyzed. All studies in this paper show that the simplicity, reliability, high efficiency and low vibration and noise of the DEBG with outer rotor were attractive for variable speed constant frequency (VSCF) wind power generation system

    A Novel Model of the Ideal Point Method Coupled with Objective and Subjective Weighting Method for Evaluation of Surrounding Rock Stability

    Get PDF
    The classification of surrounding rock stability is the critical problem in tunneling engineering. In order to decrease engineering disasters, the surrounding rock stability should be accurately evaluated. The ideal point method is applied to the classification of surrounding rock stability. Considering the complexity of surrounding rock classification, some factors such as rock uniaxial compressive strengthen, integrality coefficient of rock mass, the angle between tunnel axis and the main joint, joints condition, and seepage measurement of groundwater are selected as evaluation indices. The weight coefficients of these evaluation indices are determined by the objective and subjective weighting method, consisting with the delphi method and the information entropy theory. The objective and subjective weighting method is exact and reliable to determine the weights of evaluation indices, considering not only the expert’s experiences, but also objectivity of the field test data. A new composite model is established for evaluating the surrounding rock stability based on the ideal point method and the objective and subjective weighting method. The present model is applied to Beigu mountain tunnel in Jiangsu province, China. The result is in good agreement with practical situation of surrounding rock, which proves that the ideal point method used to classify the surrounding rock in tunnels is reasonable and effective. The present model is simple and has very strong operability, which possesses a good prospect of engineering application

    Experiments on bright field and dark field high energy electron imaging with thick target material

    Full text link
    Using a high energy electron beam for the imaging of high density matter with both high spatial-temporal and areal density resolution under extreme states of temperature and pressure is one of the critical challenges in high energy density physics . When a charged particle beam passes through an opaque target, the beam will be scattered with a distribution that depends on the thickness of the material. By collecting the scattered beam either near or off axis, so-called bright field or dark field images can be obtained. Here we report on an electron radiography experiment using 45 MeV electrons from an S-band photo-injector, where scattered electrons, after interacting with a sample, are collected and imaged by a quadrupole imaging system. We achieved a few micrometers (about 4 micrometers) spatial resolution and about 10 micrometers thickness resolution for a silicon target of 300-600 micron thickness. With addition of dark field images that are captured by selecting electrons with large scattering angle, we show that more useful information in determining external details such as outlines, boundaries and defects can be obtained.Comment: 7pages, 7 figure

    Mineralogical characterization of manganese oxide minerals of the Devonian Xialei manganese deposit

    Get PDF
    The Guangxi Zhuang Autonomous Region is an important manganese ore district in Southwest China, with manganese ore resource reserves accounting for 23% of the total manganese ore resource reserves in China. The Xialei manganese deposit (Daxin County, Guangxi) is the first super-large manganese deposit discovered in China. The Mn oxide in the supergene oxidation zone of the Xialei deposit was characterized using scanning electron microscopy (SEM), energy spectrometer (EDS), transmission electron microscopy (TEM, HRTEM), and X-ray diffraction analysis (XRD). The Mn oxides have a gray-black/steel-gray color, a semi-metallic-earthy luster, and appear as oolitic, pisolitic, banded, massive, and cellular textures. Scanning electron microscopy images show that the manganese oxide minerals are present as fine-spherical particles with an earthy surface. TEM and HRTEM indicate the presence of oriented bundled and staggered nanorods, and nanopores between the crystals. The Mn oxide ore can be classified into two textural types: (1) oolitic and pisolitic (often with annuli) Mn oxide, and (2) massive Mn oxide. Pyrolusite, cryptomelane, and hollandite are the main Mn oxide minerals. The potassium contents of cryptomelane and pyrolusite are discussed. The unit cell parameters of pyrolusite are refined

    Inhibition of Histone Deacetylases Prevents Cardiac Remodeling After Myocardial Infarction by Restoring Autophagosome Processing in Cardiac Fibroblasts

    Get PDF
    Background/Aims: Histone deacetylases (HDACs) play a critical role in the regulation of gene transcription, cardiac development, and diseases. The aim of this study was to investigate whether the inhibition of HDACs improves cardiac remodeling and its underlying mechanisms in a mouse myocardial infarction (MI) model. Methods: The HDAC inhibitor trichostatin A (TSA, 0.1 mg/kg/day) was administered via daily intraperitoneal injections for 8 consecutive weeks after MI in C57/BL mice. Echocardiography and tissue histopathology were used to assess cardiac function. Cultured neonatal rat cardiac fibroblasts (NRCFs) were subjected to simulated hypoxia in vitro. Autophagic flux was measured using the tandem fluorescent mCherry-GFP-LC3 assay. Western blot was used to detect autophagic biomarkers. Results: After 8 weeks, the inhibition of HDACs in vivo resulted in improved cardiac remodeling and hence better ventricular function. MI was associated with increased LC3-II expression and the accumulation of autophagy adaptor protein p62, indicating impaired autophagic flux, which was reversed by TSA treatment. Cultured NRCFs exhibited increased cell death after simulated hypoxia in vitro. Increased cell death was associated with markedly increased numbers of autophagosomes but not autolysosomes, as assessed by punctate dual fluorescent mCherry-green fluorescent protein tandem-tagged light chain-3 expression, indicating that hypoxia resulted in impaired autophagic flux. Importantly, TSA treatment reversed hypoxia-induced impaired autophagic flux and led to a 40% decrease in cell death. This was accompanied by improved mitochondrial membrane potential. The beneficial effects of TSA therapy were abolished by RNAi intervention targeting LAMP2; likewise, in vivo delivery of chloroquine abolished the TSA-mediated cardioprotective effects. Conclusion: Our results provide evidence that the HDAC inhibitor TSA prevents cardiac remodeling after MI and is dependent on restoring autophagosome processing of cardiac fibroblasts
    • …
    corecore