244 research outputs found

    Bifunctional Lithium Carboxylate for Stabilizing Both Lithium-Metal Anode and High-Voltage Cathode in Ether Electrolyte.

    Get PDF
    Lithium-metal batteries have attracted extensive attention due to the increasing demand for storage devices with high energy density. For the modification of lithium-metal battery, how to effectively inhibit the growth of lithium dendrites has become a key challenge. Ether electrolytes have been widely used owing to their good compatibility with lithium metal. However, they are still difficult to be applied in high-voltage battery systems because of the poor cathodic stability. In this work, we have dissolved the lithium carboxylate, LiCO2CF3, into a dimethyl ether-based ether solvent to achieve a relatively outstanding performance in both positive and negative electrodes. Using this dilute ether electrolyte (1 mol L-1), the Li∥Cu half-cells retain a Coulombic efficiency of 98.5% after 100 cycles at the current density of 1 mA cm-2 and lithium deposition amount of 1 mAh cm-2 for each cycle. Meanwhile, the Li∥NCM523 full-batteries also realize a capacity retention of nearly 80% after 100 cycles in the voltage range of 3.0-4.3 V. Moreover, when the concentration increases to 5 mol L-1, the Coulombic efficiency of the half-cells stabilizes at around 99.0% after 250 cycles under the condition of 1 mA cm-2 current density along with the average Coulombic efficiency of as high as 98.4% and the capacity retention rate of the full-batteries is nearly 95.4% after 100 cycles and over 83.8% after 200 cycles

    Cortex effect on vacuum drying process of porous medium

    Get PDF
    Corns, fruits, and vegetables are usually used as porous medium in drying process. But in fact, it must be considered as the cortex effect on mass transfer because the mass transfer of cortex is very difficult than inner medium. Based on the theory of heat and mass transfer, a coupled model for the porous medium vacuum drying process with cortex effect is constructed. The model is implemented and solved using COMSOL software. The water evaporation rate is determined using a nonequilibrium method with the rate constant parameter that has been studied. The effects of different vapor pressures (1000, 5000, and 9000 Pa), initial moisture contents (0.3, 0.4, and 0.5 water saturation), drying temperatures (323, 333, and 343 K), and intrinsic permeability for cortex part (10 −13 , 10 −14 , 10 −15 m 2 ) on vacuum drying process were studied. The results facilitate a better understanding of the porous medium vacuum drying process that nearer to the reality

    Transition routes of electrokinetic flow in a divergent microchannel with bending walls

    Full text link
    Electrokinetic flow can be generated as a highly coupled phenomenon among velocity field, electric conductivity field and electric field. It can exhibit different responses to AC electric fields in different frequency regimes, according to different instability/receptivity mechanisms. In this investigation, by both flow visualization and single-point laser-induced fluorescence (LIF) method, the response of AC electrokinetic flow and the transition routes towards chaos and turbulence have been experimentally investigated. It is found, when the AC frequency ff<30f_f<30 Hz, the interface responds at both the neutral frequency of the basic flow and the AC frequency. However, when ff>=30f_f>=30 Hz, the interface responds only at the neutral frequency of the basic flow. Both periodic doubling and subcritical bifurcations have been observed in the transition of AC electrokinetic flow. We hope the current investigation can promote our current understanding on the ultrafast transition process of electrokinetic flow from laminar state to turbulence

    Hyperuricemia and Cardiovascular Disease.

    Get PDF
    Uric acid (UA), the metabolic mediator of gout and urate renal stones, is associated with increased cardiovascular risk burden. Hyperuricemia is a common metabolic disorder, and interaction among UA and cardiovascular diseases has been clearly described. Several illnesses, including hypertension, myocardial infarction, metabolic syndrome, and heart failure, are related to increases in UA levels. In this article, we discuss the pathophysiology of hyperuricemia and describe the biologic plausibility of this metabolite's participation in the pathogenesis of cardiovascular illness. We conclude by discussing the implications of lowering plasma UA concentrations to reduce the risk of cardiovascular events, including myocardial infarction, stroke, heart failure, and cardiovascular death

    Gut macrobiotic and its metabolic pathways modulate cardiovascular disease

    Get PDF
    Thousands of microorganisms reside in the human gut, and extensive research has demonstrated the crucial role of the gut microbiota in overall health and maintaining homeostasis. The disruption of microbial populations, known as dysbiosis, can impair the host’s metabolism and contribute to the development of various diseases, including cardiovascular disease (CVD). Furthermore, a growing body of evidence indicates that metabolites produced by the gut microbiota play a significant role in the pathogenesis of cardiovascular disease. These bioactive metabolites, such as short-chain fatty acids (SCFAs), trimethylamine (TMA), trimethylamine N-oxide (TMAO), bile acids (BAs), and lipopolysaccharides (LPS), are implicated in conditions such as hypertension and atherosclerosis. These metabolites impact cardiovascular function through various pathways, such as altering the composition of the gut microbiota and activating specific signaling pathways. Targeting the gut microbiota and their metabolic pathways represents a promising approach for the prevention and treatment of cardiovascular diseases. Intervention strategies, such as probiotic drug delivery and fecal transplantation, can selectively modify the composition of the gut microbiota and enhance its beneficial metabolic functions, ultimately leading to improved cardiovascular outcomes. These interventions hold the potential to reshape the gut microbial community and restore its balance, thereby promoting cardiovascular health. Harnessing the potential of these microbial metabolites through targeted interventions offers a novel avenue for tackling cardiovascular health issues. This manuscript provides an in-depth review of the recent advances in gut microbiota research and its impact on cardiovascular health and offers a promising avenue for tackling cardiovascular health issues through gut microbiome-targeted therapies

    H2AK121ub in Arabidopsis associates with a less accessible chromatin state at transcriptional regulation hotspots

    Get PDF
    Although it is well established that the Polycomb Group (PcG) complexes maintain gene repression through the incorporation of H2AK121ub and H3K27me3, little is known about the effect of these modifications on chromatin accessibility, which is fundamental to understand PcG function. Here, by integrating chromatin accessibility, histone marks and expression analyses in different Arabidopsis PcG mutants, we show that PcG function regulates chromatin accessibility. We find that H2AK121ub is associated with a less accessible but still permissive chromatin at transcriptional regulation hotspots. Accessibility is further reduced by EMF1 acting in collaboration with PRC2 activity. Consequently, H2AK121ub/H3K27me3 marks are linked to inaccessible although responsive chromatin. In contrast, only-H3K27me3-marked chromatin is less responsive, indicating that H2AK121ub-marked hotspots are required for transcriptional responses. Nevertheless, despite the loss of PcG activities leads to increased chromatin accessibility, this is not necessarily accompanied by transcriptional activation, indicating that accessible chromatin is not always predictive of gene expression.National Natural Science Foundation of China 31970532Ministerio de Ciencia e Innovación BIO2016-76457-P, PID2019-106664GB-I00, BIO2017-84066-

    Impact of Black Carbon on Surface Ozone in the Yangtze River Delta from 2015 to 2018

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-05-10, pub-electronic 2021-05-13Publication status: PublishedFunder: National Natural Science Foundation of China; Grant(s): 41805096Funder: National Key Research and Development Program of China; Grant(s): 2016YFA0602001Despite the yearly decline in PM2.5 in China, surface ozone has been rapidly increasing recently, which makes it imperative to coordinate and control both PM2.5 and ozone in the atmosphere. This study utilized the data of pollutant concentrations and meteorological elements during 2015 to 2018 in Nanjing, China to analyze the daily correlation between black carbon and ozone (CBO), and the distribution of the pollutant concentrations under different levels of CBO. Besides, the diurnal variations of pollutant concentrations and meteorological elements under high positive and negative CBO were discussed and compared. The results show that the percentage of positive CBO had been increasing at the average rate of 7.1%/year, and it was 38.7% in summer on average, nearly twice of that in other seasons (19.2%). The average black carbon (BC), PM2.5 and NO2 under positive CBO was lower than those under negative CBO. It is noticeable that the surface ozone began to ascend when CBO was up to 0.2, with PM2.5 and NO2 decreasing and BC remaining steady. Under negative CBO, pollutant concentrations and meteorological elements showed obvious diurnal variations: BC showed a double-peak pattern and surface ozone, PM2.5, SO2 and CO showed single-peak patterns and NO2 showed a trough from 10:00 to 19:00. Wind speed and visibility showed a single-peak pattern with little seasonal difference. Relative humidity rose first, then it lowered and then it rose. Under positive CBO, the patterns of diurnal variations became less obvious, and some of them even showed no patterns, but just fluctuated at a certain level

    Epimorphin Regulates Bile Duct Formation via Effects on Mitosis Orientation in Rat Liver Epithelial Stem-Like Cells

    Get PDF
    Understanding how hepatic precursor cells can generate differentiated bile ducts is crucial for studies on epithelial morphogenesis and for development of cell therapies for hepatobiliary diseases. Epimorphin (EPM) is a key morphogen for duct morphogenesis in various epithelial organs. The role of EPM in bile duct formation (DF) from hepatic precursor cells, however, is not known. To address this issue, we used WB-F344 rat epithelial stem-like cells as model for bile duct formation. A micropattern and a uniaxial static stretch device was used to investigate the effects of EPM and stress fiber bundles on the mitosis orientation (MO) of WB cells. Immunohistochemistry of liver tissue sections demonstrated high EPM expression around bile ducts in vivo. In vitro, recombinant EPM selectively induced DF through upregulation of CK19 expression and suppression of HNF3α and HNF6, with no effects on other hepatocytic genes investigated. Our data provide evidence that EPM guides MO of WB-F344 cells via effects on stress fiber bundles and focal adhesion assembly, as supported by blockade EPM, β1 integrin, and F-actin assembly. These blockers can also inhibit EPM-induced DF. These results demonstrate a new biophysical action of EPM in bile duct formation, during which determination of MO plays a crucial role

    Application of different watershed units to debris flow susceptibility mapping: A case study of Northeast China

    Get PDF
    The main purpose of this study was to compare two types of watershed units divided by the hydrological analysis method (HWUs) and mean curvature method (CWUs) for debris flow susceptibility mapping (DFSM) in Northeast China. Firstly, a debris flow inventory map consisting of 129 debris flows and 129 non-debris flows was randomly divided into a ratio of 70% and 30% for training and testing. Secondly, 13 influencing factors were selected and the correlations between these factors and the debris flows were determined by frequency ration analysis. Then, two types of watershed units (HWUs and CWUs) were divided and logistic regression (LR), multilayer perceptron (MLP), classification and regression tree (CART) and Bayesian network (BN) were selected as the evaluation models. Finally, the predictive capabilities of the models were verified using the predictive accuracy (ACC), the Kappa coefficient and the area under the receiver operating characteristic curve (AUC). The mean AUC, ACC and Kappa of four models (LR, MLP, CART and BN) in the training stage were 0.977, 0.931, and 0.861, respectively, for the HWUs, while 0.961, 0.905, and 0.810, respectively, for the CWUs; in the testing stage, were 0.904, 0.818, and 0.635, respectively, for the HWUs, while 0.883, 0.800, and 0.601, respectively, for the CWUs, which showed that HWU model has a higher debris flow prediction performance compared with the CWU model. The CWU-based model can reflect the spatial distribution probability of debris flows in the study area overall and can be used as an alternative model
    • …
    corecore