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The main purpose of this study was to compare two types of watershed units
divided by the hydrological analysis method (HWUs) and mean curvature method
(CWUs) for debris flow susceptibility mapping (DFSM) in Northeast China. Firstly, a
debris flow inventory map consisting of 129 debris flows and 129 non-debris flows
was randomly divided into a ratio of 70% and 30% for training and testing.
Secondly, 13 influencing factors were selected and the correlations between
these factors and the debris flows were determined by frequency ration
analysis. Then, two types of watershed units (HWUs and CWUs) were divided
and logistic regression (LR), multilayer perceptron (MLP), classification and
regression tree (CART) and Bayesian network (BN) were selected as the
evaluation models. Finally, the predictive capabilities of the models were
verified using the predictive accuracy (ACC), the Kappa coefficient and the area
under the receiver operating characteristic curve (AUC). The mean AUC, ACC and
Kappa of four models (LR, MLP, CART and BN) in the training stage were 0.977,
0.931, and 0.861, respectively, for the HWUs, while 0.961, 0.905, and 0.810,
respectively, for the CWUs; in the testing stage, were 0.904, 0.818, and 0.635,
respectively, for the HWUs, while 0.883, 0.800, and 0.601, respectively, for the
CWUs, which showed that HWU model has a higher debris flow prediction
performance compared with the CWU model. The CWU-based model can
reflect the spatial distribution probability of debris flows in the study area
overall and can be used as an alternative model.
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1 Introduction

According to the China Statistical Yearbook (http://www.stats.gov.cn/tjsj/ndsj/), a
total of 7,840 geological disasters occurred in China in 2020, resulting in 197 casualties
and direct economic losses of 740 million dollars, of which debris flows accounted for
11.46%. Debris flows are among the most frequent and destructive disasters in
mountainous areas (Dash et al., 2022; Jiang et al., 2022; Qiu et al., 2022). Debris
flow susceptibility mapping (DFSM), representing where debris flows are likely to
occur, plays an important role in debris flow management strategies and has been a hot
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topic in disaster research worldwide (Ilia and Tsangaratos,
2015; Qin et al., 2019; Sun et al., 2021; Yao et al., 2022).

There are many uncertainties in the process of disaster
susceptibility mapping, such as selecting appropriate mapping
units, determining evaluation models, screening influencing
factors, determining the proportion of training and testing
data and others (Tien Bui et al., 2015; Cama et al., 2016;
Zezere et al., 2017; Chen et al., 2018; Du et al., 2018; Dou
et al., 2019; Qiao et al., 2021). Among the above uncertainty
factors, selecting appropriate mapping units is the first step to
address disasters and environmental factors. The mapping unit is
the basic functional spatial element for dividing the study area
(Cama et al., 2016). The term refers to a portion of the land
surface which contains a set of ground conditions that differ from

the adjacent units across definable boundaries (Van Den
Eeckhaut et al., 2009). The selection of mapping units affects
the methods used to address the uncertainty in the input data, the
model fitting, the reliability of disaster susceptibility mapping
and the application of disaster susceptibility mapping in disaster
prevention and mitigation (Fausto Guzzetti et al., 1999; Cama
et al., 2016; Qiao et al., 2021). At present, mapping units mainly
include the following classes: grid cell units, slope units,
watershed units, topographic units, geohydrological units,
political or administrative units, and unique condition units
(Van Den Eeckhaut et al., 2009; Chen et al., 2019; Sun et al.,
2020).

For DFSM, grid cell units and watershed units are used
frequently. Grid cell units are the most popular mapping units

FIGURE 1
The geographic location of the study area.
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with the same cell size, fast processing speed and simple
algorithm (Reichenbach et al., 2018). However, the division of
grid cells destroys the integrity of debris flows and is almost
completely unrelated to geological and topographic information
(Dragut and Eisank, 2011; Wang et al., 2017). Moreover, since
debris flows are a dynamic process, the DFSM based on grid cell
units cannot comprehensively reflect spatial information (Qin
et al., 2019). Watershed refers to the river catchment area that is
surrounded by the water-parting line; it is the basic unit for the
development and activity of debris flows, and it is the object of
exploration, research, and prevention of debris flows.
Furthermore, the watershed unit includes the formation area,
circulation area, and accumulation area of a debris flow (Qin
et al., 2019). Compared with grid cell units, watershed units can
completely consider the spatial information of a debris flow.
Some scholars have carried out DFSM based on watershed units
and obtained reliable results. Qin et al. (2019) explored the
accuracy and practicability of mapping units for the
evaluation of debris flow susceptibility based on grid cell units
and watershed units, and the results showed that watershed units
were more feasible than grid cell units when considering the
effects of geology and geomorphology on the occurrence of debris
flows. Qiao et al. (2021) proposed a region-partitioning method
for DFSM based on the topographic characteristics of watershed
units, and the results demonstrated that this method can enable
more reasonable regional-scale DFSM. Li et al. (2017) presented
an application of the rock engineering system and fuzzy C-means
algorithm for debris flow susceptibility assessment using
watershed units as mapping units in the Wudongde Dam area,
the evaluation results agreed well with field investigations. Zou
et al. (2019) developed a quantitative method for regional risk

assessment of debris flows by analyzing in-depth the
relationships among hazard-forming environments, disaster
factors and elements at risk based on hydrological response
units. The presented method may serve as pertinent guidance
for regional risk assessment of debris flows. In addition, some
scholars have used watershed units to evaluate and compare the
performance of different evaluation models for DFSM (Liang
et al., 2020; Xiong et al., 2020), and the conclusions provide
helpful data for assessing and mitigating debris flow hazards.
Therefore, it is important to carry out research based on
watershed units, which provide more evidence and views for
DFSM research. The commonly used watershed units are based
on the hydrological analysis model, also known as hydrological
response units (Li et al., 2021). In addition, watershed units can
be generated based on the mean curvature model (Romstad and
Etzelmüller, 2012). To compare the results of applying different
watershed units in DFSM, we extracted the watershed units based
on the hydrological analysis method and mean curvature method
in the study.

There are plenty of evaluation models for disaster
susceptibility mapping, from qualitative approaches to
quantitative approaches (Aditian et al., 2018; Huang et al.,
2020; Asadi et al., 2022). Qualitative methods are based on air
photo and field interpretation and the opinions of an individual
or a group of experts (Aditian et al., 2018; Ghasemian et al.,
2022b). Some qualitative methods include ranking and
weighting, such as analytic hierarchy process and weighted
linear combination (Ayalew and Yamagishi 2005; Rozos et al.,
2010). These qualitative or semi-quantitative methods are
subjective and highly dependent on experts’ knowledge, and
are not suitable for large-scale research fields (Bălteanu et al.,

FIGURE 2
Geological map and debris flow field photos of the study area: (A) geological map; (B–E) debris flow field photos.
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2010). Quantitative statistical models are built based on
appropriate mathematical models to analyze the statistical
relations between disasters and influencing factors (Hadmoko
et al., 2017; Ghasemian et al., 2022b), including the information
value (Xu et al., 2012), certainty factor concepts (Devkota et al.,
2012), frequency ratio method (Balamurugan et al., 2016),
bivariate statistical analysis (Ayalew and Yamagishi 2005),
index of entropy (Shirani et al., 2018), weight of evidence
(Constantin et al., 2010), evidential belief functions (Carranza
2014), logistic regression (Cao et al., 2019), etc.Machine learning
models are now widely used because these models can analyze the
non-linear corrections between past events and the influencing
factors and they predict where disasters will occur (He et al.,
2012; Xiong et al., 2020). These models include artificial neural
networks (Pham et al., 2017; Chen et al., 2021; Chen et al., 2022),
support vector machines (Colkesen et al., 2016), random forest
(Hong et al., 2016), decision trees (Althuwaynee et al., 2014),
classification and regression tree (Youssef et al., 2015), boosted
regression trees (Xiong et al., 2020), Bayesian network (Song
et al., 2012), adaptive neuro-fuzzy inference (Jaafari et al., 2019),
logistic model tree (Tien Bui et al., 2015) and random gradient

descent (Hong et al., 2020). Reichenbach et al. (2018) reviewed
the statistically-based landslide susceptibility assessment
literature from 1983 to 2016, and found that the most
common statistical methods for landslide susceptibility
modeling include logistic regression, neural network analysis,
data-overlay and index-based and weight of evidence analyses. In
this study, to avoid the model uncertainty caused by different
evaluation models, we use logistic regression (LR), multilayer
perceptron (MLP), classification and regression tree (CART) and
Bayesian network (BN) to carry out DFSM based on two types of
watershed units.

This study compared and analysed the applicability of two
different watershed units in regional DFSM based on four
models (LR, MLP, CART, and BN). The main purpose is to
support the selection of watershed units for DFSM. Yongji
county in the Jilin Province, China was taken as the study region
because it is under serious threat of frequent debris flows. The
division process and results of two types of watershed units were
compared. Eight DFSMs are discussed and AUC, ACC, and Kappa
analyses were used to evaluate the accuracy of the debris flow
susceptibility models.

FIGURE 3
Classification process of the watershed units: (A) hydrological analysis method and (B) mean curvature method.
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2 Study area

2.1 General settings

Yongji county is located in central eastern Jilin Province, China
(Figure 1), which covers a total area of 2,620 km2. The number of
debris flows in Yongji county has increased from 71 in 2007 to 129 in
2021, causing several deaths, destroying hundreds of houses and
thousands of acres of farmland. The debris flows scoured the
roadbed and piled up on the road, resulting in traffic paralysis. It
is necessary and urgent to map the susceptibility of debris flows in
Yongji county.

The study area lies between 125°48′09″E to 126°40′01″E
longitude and 43°18′07″N to 43°35′00″N latitude. There are four
landforms in the entire area: middle mountains, low mountains,
platform, and river valley. From southeast to northwest, the
landforms of the study area are middle mountains, low
mountains and platform with the altitudes ranging from 1,386 to
182 m. In addition to several andesites and metamorphic rocks, the
main rock type is Yanshan Early Granite. The study area lies in the
Tianshan–Xingan geosyncline fold area of the Jilin and Heilongjiang
fold system (Qin et al., 2019). Folds and faults are relatively
developed in Yongji county, which provides conditions for the
occurrence of geological disasters (Figure 2A). Yongji county is
in the mid-latitude subtemperate continental climate zone with an
annual average precipitation of 722.75 mm. There are 39 rivers
covering an area of more than 20 km2. The main rivers include the
Yinma River, Wende River, Chalu River and Aolong River.

2.2 Debris flow data inventory

A debris flow inventory map is a prerequisite for DFSM(Xu
et al., 2012; Arabameri et al., 2020; Dash et al., 2022). A total of
129 debris flows were collected based on field surveys and historical

materials. Figure 2A shows that debris flows are mainly distributed
across the southeast mountain area. Statistics show that among
129 debris flows, only 7 are medium in size and 122 are small. In
recent years, the increase in debris flow frequency in Yongji county
has been closely related to deforestation and reclamation. With the
destruction of forest vegetation, rainfall is more likely to cause soil
erosion, which gradually forms a series of gullies. These gullies
provide circulation conditions for debris flows. Figures 2B–E shows
some images of occurred debris flows in the study area.

3 Watershed units

3.1 Division methods for different watershed
units

In this study, the extraction of watershed units was completed in
ArcGIS 10.2 software (Tien Bui et al., 2015; Cao et al., 2019). The
most commonly used watershed units (HWUs) are classified by the
hydrological principles (Fausto Guzzetti et al., 1999). HWUs are
derived based on an 8-direction flow algorithm (Horton et al., 2013).
Establishing the HWUs consists of the following six steps: 1) filling
the original DEM, 2) extracting the flow direction, 3) calculating the
flow accumulation, 4) extracting river networks based on a
threshold, 5) stream linking, 6) dividing HWUs based on flow
direction and stream linking. The detailed classification process is
shown in Figure 3A.

In addition, watershed units can be generated based on the mean
curvature method (CWUs). The mean curvature is a simple
combination of profile curvature and plan curvature. Its
maximum and minimum values can indicate the changes in
aspect and slope positions at the same time. Therefore, the mean
curvature can reflect the ridge line, valley line, platform edge and
wide valley edge (Romstad and Etzelmüller, 2012). Establishing the
CWUs consists of the following five steps: 1) smoothing the original

FIGURE 4
Division of watershed units: (A) hydrological analysis method and (B) mean curvature method.
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DEM, 2) calculating the mean curvature, 3) extracting the flow
direction, 4) filling depressions based on flow direction data, and 5)
dividing CWUs based on flow direction and depressions. The
detailed classification process is shown in Figure 3B.

3.2 Watershed unit classification results

For HWUs, the number and size are closely related to DEM
resolution and flow threshold, but for CWUs, the control factor is

FIGURE 5
Flowchart of the research methodology.
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only DEM resolution. For HWUs, flow threshold values of 500,
1,000, 2000, 5,000, and 10,000 were chosen based on a DEM with
a resolution of 30 m. For CWUs, we resampled the DEM with

resolutions of 50, 100, 200, 300, 500, and 1,000. To ensure that the
number and size of the two types of watershed units were not
much different and consistent with the actual watersheds, a flow

FIGURE 6
(Continued).
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threshold of 1,000 and a DEM resolution of 300 were selected to
divide the watershed units. For the HWUs, the study area was
divided into 1,092 watershed units. The smallest unit was
0.10 km2, the largest unit was 13.63 km2, and the mean size

was 2.40 km2 (Figure 4A). For CWUs, the study area was divided
into 1,211 watershed units. The smallest unit was 0.11 km2, the
largest unit was 8.87 km2, and the mean size was 2.17 km2

(Figure 4B).

FIGURE 6
(Continued).
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4 Materials and methods

The flowchart of the research methodology is shown in Figure 5.
DFSM of Yongji county using four models (LR, MLP, CART, and
BN) and watershed units (HWUs and CWUs) have been carried out
in five main steps: 1) data collection and screening influencing
factors, 2) division of two types of watershed units, 3) calculation of
frequency ratio values (FRs) for all influencing factors, 4) building
debris flow models and constructing DFSM, and 5) debris flow
model validation and comparison using AUC, ACC and Kappa.

4.1 Screening influencing factors

The occurrence of debris flows is affected by many factors
including topographic, geomorphologic, geological, ecological and
meteorological factors (Zhang et al., 2012; Bregoli et al., 2014; Hu
et al., 2014). Based on field observations, available literature and
expert experience, fourteen influencing factors were considered,
such as watershed area, relative height difference, watershed
average elevation, watershed slope, mean curvature, fault density,
river density, stream power index (SPI), topographic wetness index
(TWI), plan normalized difference vegetation index (NDVI),
landforms, precipitation, land use and lithology.

Because substantial collinearity will lead to model instability,
collinearity analysis is essential before influencing factors are applied
for DFSM(Qiu et al., 2022). Person’s correlation coefficient was
calculated to test the collinear relationship among these factors, and
the results are shown inTable 1. There is no correlation coefficient when
the absolute value is less than 0.7 (Dormann et al., 2013; Yao et al.,
2022). There was high collinearity between relative height difference
and watershed average elevation, and the Person’s correlation
coefficient was 0.86. In addition, the value of collinearity between

watershed average elevation and precipitation was 0.69. Therefore,
the watershed average elevation was eliminated.

The watershed area, relative height difference, watershed slope,
mean curvature, SPI and TWI were extracted from the DEM with a
resolution of 30 m. Fault, river, and lithology data were acquired from
the geological map of Yongji county and field investigations. The
Landsat 8 image taken on 11 August 2021, was used to produce the
NDVI. Landforms, precipitation, and land use were provided by
government reports. Thirteen influencing factors were converted to
a grid cell with a resolution of 30 m in ArcGIS 10.2 (Chen et al., 2017).
Table 2 shows date source and scale of influencing factors. When
watershed units are applied to DFSM, grid patterns for each factor need
to be transferred to the corresponding watershed units. For watershed
area, geometric calculation in the attribute table was used to calculate
the area of each watershed. The difference between the highest and the
lowest points in each watershed was calculated as a relative height
difference (Qin et al., 2019). For watershed slope, mean curvature, SPI,
TWI, and NDVI, the zonal statistics tool in the spatial analysis was used
and the statistical type was “mean.” The length of faults and rivers in
each watershed was extracted by using the intersection tool, and then,
the fault density and river density in each watershed were calculated
using the field calculator. Precipitation for each watershed was
determined based on the principle of majority, and this principle
was also applied to factors of landforms, land use and lithology. The
data types of precipitation, landforms, land use and lithology are
discrete, while the data types of other factors are continuous. The
influencing factor layers based on HWUs with a flow threshold of
1,000 are shown in Figure 6.

The FRs of the influencing factor subclass were used as the input
variable of the DFSM models (Huang et al., 2020). Based on a series
of previous studies (Xu et al., 2012; Aditian et al., 2018; Vakhshoori
et al., 2019; Chang et al., 2020), we divided the continuous factor into
eight levels using the natural fracture method. Taking HWUs with a
flow threshold of 1,000 as an example, the FRs for each level of
thirteen factors are shown in Table 3.

4.2 Logistic regression (LR)

Logistic regression (LR) may be the most widely used statistical
technique in susceptibility assessment (Colkesen et al., 2016). As a
multivariate regression method, LR can find a model to describe the
relationship between multiple independent variables and a
dependent variable (Lee and Pradhan 2006; Lee 2007;
Pourghasemi et al., 2013). For DFSM, the influencing factors are
considered the independent variables and the occurrence and non-
occurrence of debris flows are considered the dependent variables.
For LR, variables may be continuous, discrete or arbitrary
combinations of two types (Lee, 2007). LR can be expressed as
follows (Ayalew and Yamagishi 2005; Yalcin et al., 2011; Schlögel
et al., 2018):

P � 1
1 + e−z

(1)
Z � α + β1x1 + β2x2 + . . . βnxn (2)

where P denotes the probability of a debris flow occurrence in each
watershed, varying between 0 and 1;Z represents the dependent variable
including non-debris flows (0) and debris flows (1); α represents the

FIGURE 6
(Continued). Maps of influencing factors based on HWUs with a
flow threshold of 1,000: (A) watershed area; (B) relative height
difference; (C) watershed slope; (D) mean curvature; (E) fault density;
(F) river density; (G) SPI; (H) TWI; (I) NDVI; (J) landforms; (K)
precipitation; (L) land use; (M) lithology.
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intercept of the regression function, β1, β2, . . . βn are the regression
coefficients; and x1, x2, . . . xn are the debris flow influencing factors.

4.3 Multilayer perceptron (MLP)

Multilayer perceptron (MLP) is a kind of artificial neural network
and has been widely used in classification (Tien Bui et al., 2015; Pham

et al., 2017). The MLP generally consists of three main components,
namely, input layers, hidden layers, and output layers (Kavzoglu and
Mather 2003). For DFSM, the input layers are considered the
influencing factors of debris flow, the output layers are considered
the classification result of inferring debris flow or non-debris flow, and
the hidden layers are considered the classification layers that convert
input into output. The MLP model with only one hidden layer is the
most basic three-tier structure model, which can fit and predict many

TABLE 1 The results of the Person’s Correlation Coefficient.

Factors WA E RHD WS F R NDVI SPI TWI Pre MC LU LF Li

WA 1.00

E 0.04 1.00

RHD 0.25 0.86 1.00

WS 0.00 0.33 0.29 1.00

F −0.03 0.22 0.09 0.02 1.00

R −0.05 −0.44 −0.36 −0.36 −0.18 1.00

NDVI −0.10 −0.30 −0.38 −0.22 −0.08 0.17 1.00

SPI 0.06 0.45 0.46 0.23 0.14 −0.19 −0.23 1.00

TWI 0.00 0.00 0.04 −0.55 0.00 0.20 0.02 0.36 1.00

Pre −0.02 0.69 0.48 0.21 0.18 −0.24 −0.43 0.42 0.02 1.00

MC −0.10 −0.19 −0.19 −0.03 −0.08 0.03 0.06 −0.42 −0.25 −0.11 1.00

LU 0.02 −0.17 −0.17 −0.59 0.11 0.31 0.18 −0.04 0.37 −0.08 −0.13 1.00

LF 0.03 0.33 0.30 0.42 0.12 −0.34 −0.28 0.27 −0.16 0.36 −0.16 −0.26 1.00

Li 0.00 −0.10 −0.09 −0.48 −0.04 0.23 0.13 −0.15 0.29 −0.03 0.05 0.31 −0.28 1.00

(‘WA’ represents ‘Watershed area’, ‘E’ represents ‘Watershed average elevation’, ‘RHD’ represents ‘Relative height difference’, ‘WS’ represents ‘Watershed slope’, ‘F’ represents ‘Fault density’, ‘R’

represents ‘River density’, ‘NDVI’ represents ‘Plan normalized difference vegetation index’, ‘SPI’ represents ‘Stream power index’, ‘TWI’ represents ‘topographic wetness index’, ‘Pre’ represents

‘precipitation’, ‘MC’ represents ‘mean curvature’, ‘LU’ represents ‘Land use’, ‘LF’ represents ‘Landforms’ and ‘Li’ represents ‘Lithology’).

TABLE 2 Date source and scale of influencing factors.

Factors Data source Scale

Watershed area (km2) DEM 30 m × 30 m

Relative height difference (m) DEM 30 m × 30 m

Watershed slope (°) DEM 30 m × 30 m

Mean curvature DEM 30 m × 30 m

Fault density (km/km2) The geological map of Yongji County and field investigations 1:200000

River density (km/km2) The geological map of Yongji County and field investigations 1:200000

SPI DEM 30 m × 30 m

TWI DEM 30 m × 30 m

NDVI The Landsat 8 image 30 m × 30 m

Landforms Government reports 1:200000

Precipitation (mm) Government reports 1:200000

Land use Government reports 1:200000

Lithology The geological map of Yongji County and field investigations 1:200000
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TABLE 3 Description and FRs of all the influencing factors (HWUs with a flow threshold of 1,000).

Factors Descriptions of influencing factors Class FR

Watershed area (km2) The watershed area is generally proportional to the amount of water in the catchment and material sources. The greater the material sources are, the
stronger the destructive power is

0.10–1.17 0.92

1.17–2.01 0.36

2.01–2.84 1.01

2.84–3.86 1.43

3.86–5.03 0.95

5.03–6.64 0.14

6.64–8.84 3.14

8.94–13.64 1.77

Relative height difference (m) The relative elevation difference is the value between the highest and lowest elevations in a watershed unit Shi et al. (2015). The greater the height
difference is, the greater the potential energy of the debris flow is, loose deposits are easy to move under water scouring, and the kinetic energy of debris
flow is also high

1.88–58.41 0.00

58.41–125.09 0.22

125.09–187.63 0.82

187.63–251.52 0.80

251.52–323.73 1.28

323.73–429.99 1.76

429.99–590.74 3.95

590.74–817.72 2.98

Watershed slope (°) The watershed slope represents the average slope within the watershed. The greater the watershed slope is, the worse the slope stability is, which provides
materials for debris flows

0.02–3.77 0.00

3.77–5.54 0.68

5.54–7.42 0.80

7.42–9.40 1.25

9.40–11.46 2.18

11.46–14.46 2.29

14.46–22.29 2.43

Mean curvature Curvature is generally used to describe the physical characteristics of the watershed and understand the erosion process Li et al. (2021) −0.0585–−0.0094 2.34

−0.0094–−0.0037 2.15

−0.0037–−0.0016 1.93

−0.0016–−0.0002 1.18

−0.0002–0.0009 0.50

(Continued on following page)
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TABLE 3 (Continued) Description and FRs of all the influencing factors (HWUs with a flow threshold of 1,000).

Factors Descriptions of influencing factors Class FR

0.0009–0.0028 0.87

0.0028–0.0060 0.61

0.0060–0.0226 4.84

Fault density (km/km2) Faults are often related to seismic activity. Earthquakes produce loose deposits which provides materials for debris flows Hong et al. (2015) 0–0.07 0.82

0.07–0.19 3.22

0.19–0.33 0.62

0.33–0.44 1.82

0.44–0.58 1.45

0.58–0.79 0.37

0.79–1.11 4.41

1.11–2.54 1.04

River density (km/km2) River density is the ratio of total river length in a watershed to the watershed area Lei et al. (2010). The river will erode the rock mass and destroy the
stability of the slope, which provides conditions for the formation of debris flows

0–0.18 0.61

0.18–0.46 0.78

0.46–0.69 2.07

0.69–0.97 1.10

0.97–1.36 0.65

1.36–1.90 0.22

1.90–2.81 0.15

2.81–5.46 0.00

SPI SPI is used to measure the erosion power of the stream Althuwaynee et al. (2014) −4.96–1.13 0.00

1.13–1.73 0.14

1.73–2.29 0.57

2.29–2.81 0.87

2.81–3.33 1.93

3.33–4.53 2.50

TWI The higher the TWI value is, the higher the soil water content is, indicating a higher potential for triggering debris flows in the watershed (Esper Angillieri.
(2020)

5.85–6.79 2.15

6.79–7.23 1.59

7.23–7.73 1.03

(Continued on following page)
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TABLE 3 (Continued) Description and FRs of all the influencing factors (HWUs with a flow threshold of 1,000).

Factors Descriptions of influencing factors Class FR

7.73–8.32 0.54

8.32–8.96 0.12

8.96–18.43 0.00

NDVI The NDVI reflects vegetation coverage. High vegetation coverage is conducive to soil and water conservation and can reduce the amount of materials in
debris flows

−0.09–0.08 1.52

0.08–0.12 1.31

0.12–0.17 1.17

0.17–0.23 1.53

0.23–0.29 0.40

0.29–0.36 0.99

0.36–0.43 0.35

0.43–0.54 0.21

Landforms Landforms affect the formation, movement and scale of debris flows. Mountain areas are prone to debris flows due to the large slope and fast water
catchment speed

Platform 0.00

River valley 0.27

Low mountains 0.37

Middle mountains 3.15

Precipitation (mm) Precipitation provides water and dynamic conditions for debris flows 650–675 0.00

675–700 0.25

700–715 2.05

715–730 0.83

Land use Land use is closely related to the occurrence of debris flows. For example, farmland is prone to debris flows due to serious soil erosion Forest 1.45

Residential land 1.04

Surface of the water 0.00

Farmland 0.51

Lithology For different lithologies, their hardness, resistance to erosion and weathering are also different Relatively hard clastic rock 0.94

Soft clastic rock 0.87

Hard bedded rock 0.00

Hard massive rock 2.00

Soil mass 0.25
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non-linear problems (Li et al., 2019). In this study, a single-hidden-layer
MLP model is used in DFSM. For example, n0, n1 and n2 represent the
number of input, hidden and output layers, respectively, and the input
variables are X � [x1, x2 . . . , xn0]. Then, the input and output of the
hidden layer are: (Li et al., 2019; Huang et al., 2020):

zj � ∑n0

i�1wijxi + bj (3)
yj � f zj( ) � 1 + e−zj( )−1 (4)

where zj, bj and yj represent the y th input variable, threshold value
and output variable of the neuron in the hidden layer, respectively,
wij represents the weight value between the i th input neuron and
the j th neuron in the hidden layer, and f(zj) represents the
activation function. Then the input and output of neurons in the
output layer are:

zk � ∑n1

j�1wjkyi + bk (5)
yk � zk (6)

where zk, bk and yk represent the j th input variable, threshold value
and output variable of the neuron in the output layer, respectively,
wik represents the weight value between the j th neuron in the
hidden layer and the k th output neuron.

4.4 Classification and regression tree (CART)

The decision tree model is a technique that uses a tree structure
to discover and describe structural patterns in data. It does not
require a preestablished relationship between all input variables and
a target variable (Hitoshi Saito and Matsuyama, 2009). As an
algorithm of the decision tree model, classification and regression

tree (CART) was first proposed by Breiman et al. (1984) The CART
consists of a root node, a set of internal nodes and a set of leaf nodes.
The leaf nodes correspond to the classification result, and the other
nodes correspond to the classification rules. CART was selected as
the decision tree model in this study in view of its performance
efficiency (Wang et al., 2015).

4.5 Bayesian network (BN)

The Bayesian network (BN) is a graphical model for
probabilistic relationships among a set of variables (Song et al.,
2012). BN can be represented by directed acyclic graphs and
conditional probabilities, reflecting the independent and
interdependent relationship among various variables. The
calculation formula is given as follows (Han et al., 2019):

P L,M,N( ) � P L( ) × P M|L( ) × P N|L,M( ) (7)

where P(L) is the prior probability, indicating the conditional
probability without the parent node, P(M|L) is the conditional
probability, indicating the occurrence probability of M under L
conditions and P(N|L,M) is the conditional probability, indicating
the occurrence probability of N under L and M conditions.

4.6 Model performance evaluation

In this study, three commonly used criteria, including the
predictive accuracy (ACC), the Kappa coefficient and the area
under the receiver operating characteristic curve (AUC) were
used to evaluate the prediction ability of DFSMs. The calculation
of the three criteria is based on the confusion matrix (Ghasemian
et al., 2022a). The confusion matrix, also known as the error matrix,
is a standard format for accuracy evaluation. The confusion matrix
can represent the difference between the model prediction results
and the actual observation results (Xiong et al., 2020). In this study,
the confusion matrix of the debris flow susceptibility predictive
models is shown in Table 4. For example, a true positive (TP)
suggests that the prediction result is ‘Debris-Flow’, and the actual
observation result is ‘Debris-Flow’.

The predictive accuracy (ACC) represents the ratio of correctly
predicted observations to total observations. This index shows how
well the debris flow model works:

ACC � TP + TN

TP + FN + FP + TN
(8)

The Kappa index is used to assess the acceptability of debris flow
models which can be calculated by:

TABLE 4 Confusion matrix.

Prediction
Actuality

Debris-flow (1) Non-Debris-flow (0)

Debris-Flow (1) True positive (TP) False negative (FN)

Non-Debris-Flow (0) False positive (FP) True negative (TN)

FIGURE 7
Contribution of influencing factors.
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K � p0 − pe

1 − pe
(9)

pe � A × a + B × b

n2
(10)

where K is the Kappa coefficient; p0 is overall classification
accuracy, namely, ACC; A is the actual number of debris
flows, and it is also the sum of TP and FN (Table 4); B is the
actual number of non-debris flows, and it is also the sum of FP

FIGURE 8
(Continued).
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and TN; a is the predicted number of debris flows, and it is also
the sum of TP and FP; b is the predicted number of non-debris
flows, and it is also the sum of FN and TN; n is the total number of
samples, and it is also the sum of A and B or a and b. The K varies
from 0.0 to 1.0, the higher the K value is, the better the
classification accuracy of the model.

The receiver operating characteristic (ROC) curve and area
under the curve (AUC) can compare the prediction
performance of different classifiers (Akgun et al., 2012). The
abscissa and ordinate of the ROC are the false-positive rate
(FPR) and true-positive rate (TPR) respectively. They can be
obtained from the following equations (Pourghasemi et al.,
2013):

FPR � FP

FP + TN
(11)

TPR � TP

TP + FN
(12)

AUC represents the quality of models that reliably predict the
occurrence or non-occurrence of debris flows. The AUC varies from
0.5 to 1.0, and the higher the AUC value is, the better the prediction
performance of the model.

5 Results and validation

5.1 Model parameters

The whole analysis process was implemented in IBM SPSS
software (Sun et al., 2019; Sun et al., 2021). For LR, the forward
step mode was adopted to screened variables. For BN model, the
mechanism type was Tree Augmented naive Bayes (TAN), and
Bayesian adjustment of small cell count was selected as a
parameter learning method. For MLP, one hidden layer was
selected, and the maximum training time was used as the

termination rule. For CART, the maximum tree depth was set
to 10, and percentage was used as the termination rule. Other
parameters are default.

5.2 Contribution of debris flow influencing
factors

The Chi-Squared statistic was employed to identify the most
important factors affecting the occurrence of debris flows in the
study area (Ghasemian et al., 2022a). Figure 7 shows that
landforms have the highest impact (128.5) on debris flows in
the study area, followed by relative height difference and SPI
(114.5), watershed slope (110.5), TWI (82.5), precipitation
(74.5), lithology (60), land use (43.5), watershed area (27.5),
river density (26.5), mean curvature (24), NDVI (23), and
fault density (21.5).

5.3 Spatial datasets for model building

According to field surveys and historical materials, a total of
129 debris flows were collected. Meanwhile, 129 non-debris flows
were selected, which were at least 500 m away from the nearest
debris flow (Figure 4) (Dou et al., 2019; Sun et al., 2020). Assigned
1 and 0 for debris flows and non-debris flows, respectively. The FRs
of the thirteen influencing factors shown in Table 2 were taken as the
input variables, and the debris flows and non-debris flows were
taken as the output variables. For all 258 samples, 70% (n = 180)
were selected randomly for training data, which were used to create
the DFSMmodels. The remaining 30% (n = 78) were used as testing
data, which were applied to validate the DFSMmodels. Based on two
types of watershed units (HWUs and CWUs) and four models (LR,
MLP, CART and BN), eight DFSMs of Yongji county were
completed.

FIGURE 8
(Continued). Eight DFSMs: (A) DFSM of HWUs and LR; (B) DFSM of HWUs and MLP; (C) DFSM of HWUs and CART; (D) DFSM of HWUs and BN; (E)
DFSM of CWUs and LR; (F) DFSM of CWUs and MLP; (G) DFSM of CWUs and CART and (H) DFSM of CWUs and BN.
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5.4 Eight DFSMs

In this paper, IBM SPSS software was chosen to build the debris
flow susceptibility predictive models. The model outputs are the

debris flow susceptibility indices of all watershed units in the study
area. Debris flow susceptibility indices are the probability of debris
flow occurrence which varies from 0 to 1 (Xiong et al., 2020). Based
on the ArcGIS software, the debris flow susceptibility indices were

FIGURE 9
The classification of DFSMs and debris flow density: (A) area ratio; (B) debris flows ratio; (C) debris flow density.
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converted into raster format to produce the debris flow susceptibility
map. Quantile classification was applied to divide the final maps into
five classes, namely, very low susceptibility (VL), low susceptibility
(L), moderate susceptibility (M), high susceptibility (H), and very
high susceptibility (VH). (Martha et al., 2013; Hussin et al., 2016;
Steger et al., 2017).

As shown in Figure 8, the susceptibility distributions of the eight
models have common characteristics. Very high and high
susceptibility areas are mainly distributed in the southeast,
moderate susceptibility areas are mainly distributed in the
middle, and very low and low susceptibility areas are mainly
distributed in northwestern of Yongji county, which is consistent
with previous research results (Qin et al., 2019). The landform in the
southeast of the study area is mainly middle mountains, and the land
use is mainly forest and farmland. The watershed units distributed in
the southeast have large relative height differences and slopes, which
leads to frequent debris flow disasters. The precipitation decreases
from southeast to northwest, which is consistent with the
susceptibility distribution. The lithology in southeastern Yongji
county is hard massive rock, mainly granite. Weathered granite is
a component of debris flows, which increases the density and
destructive power of debris flows (Figures 2B–E).

For the eight DFSMs, the area ratios of the five susceptibility
classes (very high, high, moderate, low, and very low) were
12.85–19.96, 13.82–21.51, 14.87–23.79, 17.70–28.33, and 16.56%–
36.70%, respectively (Figure 9A); The debris flow ratios of the five
susceptibility classes were 62.79–76.74, 12.40–24.81,
6.98–14.73,0.78%–3.10% and 0%–0.78%, respectively (Figure 9B).
As shown in Figure 9C, the debris flow density was calculated to
evaluate the performance of the DFSMs, that is, the ratio of debris
flow percentage to area percentage on each susceptible class (Pham
et al., 2016). The maximum values of the debris flow density of the

eight models appear in the very high susceptibility class, varying
from 3.15 to 5.61. The minimum values all appear in the very low
susceptibility class, varying from 0.00 to 0.04. The debris flow
density increases gradually from a very low class to a very high
class, which provides a good visualization of the spatial predictions
of debris flows (Pham et al., 2017; Asadi et al., 2022).

5.5 Validation and comparison of themodels

Model validation is a vital step in disaster susceptibility mapping
(Wang et al., 2022). By considering the three commonly used
performance metrics of ACC, AUC and Kappa, eight models
were verified. The AUC, ACC and Kappa coefficient values of
the eight models on the training and testing data are shown in
Figure 10.

In the training phase, when HWUs were used as the mapping
unit, the ACC stated that HWUs_CART model had the highest
value (0.990), followed by HWUs_MLP (0.932), HWUs_BN
(0.919) and HWUs_LR (0.881). It showed that the HWUs_
CART model can correctly classify the debris flow and non-
debris flow locations as debris flow and non-debris flow
situations respectively. The highest and lowest Kappa values
were 0.980 and 0.762, respectively for the HWUs_CART and
HWUs_LR. Meanwhile, HWUs_MLP (0.864) and HWUs_BN
(0.838) was ranked in other positions. In terms of AUC, results
indicated that the HWUs_CART model with a value of 0.991 had
higher performance than the HWUs_MLP (0.982), HWUs_BN
(0.970) and HWUs_LR (0.966). When CWUs was used as the
mapping unit, the ACC, Kappa and AUC values of the CWUs_
CART model were 0.980, 0.960 and 0.985, which showed that the
performance of the CWUs_CART model was the highest,

FIGURE 10
The AUC, ACC, and Kappa coefficient values of the eight models for the training and testing data.
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followed by the CWUs_MLP (0.893, 0.787, 0.967), CWUs_BN
(0.899, 0.778, and 0.946) and CWUs_LR (0.858, 0.716, and 0.946)
(Figure 10). Although the results showed the excellent
performance for all the four algorithms, the CART had the
highest ability in debris flow classification and susceptibility
mapping in the study area. In terms of watershed unit, ACC,
Kappa and AUC values decreased when HWUs was replaced by

CWUs, indicating that HWUs were more suitable for DFSM in the
study area than CWUs.

Right side of Figure 10 showed the prediction capabilities of the
eightmodels based on testing dataset. These results are very important
for evaluating the applicability and robustness of the models. When
HWUs were used as the mapping unit, the highest value of ACC was
0.834 for the HWUs_CARTmodel, next for the HWUs_MLP (0.826),
HWUs_BN (0.808) and HWUs_LR (0.802) models. The Kappa for
the HWUs_CART model was 0.668 as the highest value, whereas this
value was 0.652, 0.617, and 0.604 for HWUs_MLP, HWUs_BN, and
HWUs_LR, respectively. The highest and lowest AUC values were
0.942 and 0.882, respectively for the HWUs_CART and HWUs_LR.
Meanwhile, HWUs_MLP (0.902) and HWUs_BN (0.892) was ranked
in other positions. Correspondingly, ACC, Kappa and AUC from
CWUs were shown in Figure 9, which indicated a similar result with
HWUs. CART model resulted in the highest ACC, Kappa and AUC
values of 0.832, 0.663, and 0.909, whichmanifested it is the best model
for the study area. At the same time, the HWU-based models had
better performance than the CWU models for DFSM in the
study area.

FIGURE 11
Watershed unit classification results comparison: (A) The boundaries of HWUs are relatively consistent with reality in mountainous areas; (B) The
boundaries of CWUs do not match well with the actual situation in mountainous areas; (C) Small and narrow units in flat areas of HWUs; and (D) The
division of CWUs in flat areas is relatively satisfactory.

TABLE 5 AUC values of testing data in different studies.

Studies Method Mapping units AUC

This study LR HWUs 0.882

MLP HWUs 0.902

CART HWUs 0.942

BN HWUs 0.892

Qin et al. (2019) FR HWUs 0.879

Qiao et al. (2021) AHP HWUs 0.812
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5.6 One-way ANOVA test

The results of the models are tested by one-way ANOVA in
SPSS. For HWUs, there are significant differences between CART
and each of the three methods (LR, MLP, and BN). There are no
significant differences among LR, MLP, and BN. For CWUs, there
are no significant differences between MLP and each of the two
methods (LR and BN). There are significant differences between the
other methods.

6 Discussion

6.1 Watershed unit classification processes
and results comparison

As shown in Figure 3, the extraction processes of HWUs are
more complex than those of CWUs, because HWUs require six steps
while CWUs require five steps. Model builder in ArcGIS is a
workflow that connects a series of geoprocessing tools (Qin et al.,
2019). It takes the output of one tool as the input of the other tool.
Model builder can greatly reduce operation time and improve work
efficiency. We had built two workflows for the processes of
extracting HWUs and CWUs in the model builder. Experiments
on two types of watershed units showed that HWUs extraction
required 17 s, while CWUs extraction required only 3 s. In addition,
for the division of HWUs, the influence of DEM resolution and flow
threshold needs to be considered, while for CWUs, only DEM
resolution needs to be considered. In summary, it takes more
time and effort to extract HWUs than CWUs.

There are also significant differences between the two types of
watershed units in the classification results. As shown in Figure 4,
HWUs are mostly strip-shaped and widely different in size, while
CWUs are nearly square and relatively uniform in size. The
watershed unit boundaries extracted by the hydrological analysis
method in areas with obvious topographic changes are relatively
consistent with reality (Figure 11A). However, there are many small
and narrow units in flat areas, because there is no clear flow direction
in flat areas for hydrological analysis (Massimiliano et al., 2016)
(Figure 11C). For the curvature method, the division of watershed
units in flat areas is relatively satisfactory, and there is no parallel line
problem similar to the hydrological analysis method (Figure 11D).
However, in areas with obvious topographic changes, the boundaries
of watershed units do not match well with the actual situation
(Figure 11B).

6.2 Comparison of DFSMs based on different
evaluation models

Four models, LR, MLP, CART and BN, were used to complete
the DFSMs of Yongji county in this study. Figure 10 shows the
predictive ability of the eight models. When HWUs were used as
mapping units, CART had the highest evaluation criteria with AUC,
ACC and Kappa values of 0.991, 0.990, and 0.980 respectively,
followed by MLP (0.982, 0.932, 0.864), BN (0.970, 0.919, 0.838) and
LR (0.966, 0.881, 0.762) in the training stage. For the testing stage,
the CART had the highest prediction accuracy with AUC, ACC and

Kappa values of 0.942, 0.834 and 0.668 respectively, followed by
MLP (0.902, 0.826, 0.652), BN (0.892, 0.808, 0.617) and LR (0.882,
0.802, 0.604). When CWUs were used as mapping units, the
evaluation results showed the same trend as HWUs. The
comparisons of the four evaluation models show that the CART
had the best predictive ability over the other three models. The
current research was in agreement with previous research results.
Wang et al. (2015) analyzed landslide susceptibility based on five
mathematical models (artificial neural network, frequency ratio,
CART, LR and weights of evidence methods) and three sampling
strategies. They indicated the results obtained from CART show
steady prediction power with an AUC value larger than 0.7.
Felicísimo et al. (2012) indicated that the CART is one of the
most predictive models with the AUC value of 0.77. Using
random forest (RF), boosted regression tree (BRT), classification
and regression tree (CART), and general linear (GLM), Youssef et al.
(2015) found the success rate for CART was 0.816 and for the
prediction rate the CART was the highest with a value of 0.862.
CART represents information in an intuitive and easy visual way,
and is widely used in many fields (Bevilacqua et al., 2003;
Malinowska 2014; Kim et al., 2015; Youssef et al., 2015; Yang
et al., 2016).

Several studies have been conducted in similar areas. Selecting
the frequency ratio (FR) model as the statistical method, Qin et al.
(2019) explored the accuracy and practicability of HWUs and grid
cell units (GCUs) in evaluating debris flow susceptibility in Yongji
county. Qiao et al. (2021) built debris flow susceptibility models via
the analytical hierarchy process (AHP) method and generated maps
of Yongji county. The AUC values of the testing data in different
studies are shown in Table 5. When the HWUs were chosen as
mapping units, the AUC values of the DFSMs based on AHP, FR,
LR, BN, MLP and CART were 0.812, 0.879, 0.882, 0.892, 0.902, and
0.942 respectively. The main difference among these DFSMs is the
selection of different evaluation models, which indicates that
machine learning models can improve the prediction accuracy of
DFSMs. These results are consistent with previous studies,
indicating that machine learning models are more suitable for
DFSM than heuristic and general statistical models (Huang et al.,
2020; Sun et al., 2021).

6.3 Comparison of DFSMs based on different
watershed units

The selection of mapping units is one of the key issues for the
rationality and correctness of disaster susceptibility mapping (Van Den
Eeckhaut et al., 2009; Chen et al., 2019; Sun et al., 2020). The impact of
different mapping units on disaster susceptibility mapping is greater
than that of statistical methods (Zezere et al., 2017). Although many
studies have tried to compare different evaluation models for disaster
susceptibility mapping (Achour et al., 2018; Liang et al., 2020; Xiong
et al., 2020; Dash et al., 2022; Qiu et al., 2022), very few studies have
considered differentmapping units. Qin et al. (Qin et al., 2019) explored
the effect of grid cell unit and HWUs on the susceptibility mapping of
debris flow, they found HWUs can reflect the geological and
geomorphic environmental conditions of a debris flow accurately
and perfectly. Li et al. (Li et al., 2021) discussed the influence of
four different HWUs on debris flow susceptibility assessment results.
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The results show that the appropriate watershed division scheme can
obtain more reasonable results. In this study, HWUs and CWUs were
selected tomap debris flow susceptibility.When the CARTwas selected
as the machine learning model, the HWUs generated high AUC, ACC,
and Kappa for training data (0.991, 0.990 and 0.980) compared to the
CWUs (0.985, 0.980, and 0.960). For testing data, the AUC, ACC, and
Kappa of HWUs were 0.942, 0.834, and 0.668, respectively. The AUC,
ACC, and Kappa of CWUs were 0.909, 0.832, and 0.663, respectively.
The results suggest that the HWU model has a higher debris flow
prediction performance than the CWU model. The same trend can be
observed in the LR, MLP, and BN models. Therefore, the HWU-based
model is superior to the CWU-basedmodel in debris flow susceptibility
assessment due to higher training and testing accuracy.

As described in “6.1 Watershed unit classification processes and
results comparison,” compared with CWUs, HWUs agree well with
the actual watershed units in mountainous areas, but small and
narrow units appear in plain areas. Since the frequency of debris
flows in mountainous areas is much higher than that in plain areas,
the division of watershed units in mountainous areas is more
important than that in plain areas. Therefore, the HWU model is
more practical than the CWU model. CWUs can also represent the
distribution of watersheds and can be used as an alternative scheme.

Although this paper discussed the application of two types of
watershed units in DFSM and obtained positive results, there are
some limitations: 1) the number of debris flows is small, and 2) only
HWUs with a threshold of 1,000 and CWUs with a resolution of
300 are selected for comparison. In future research, we will
constantly update the debris flow database to improve the data
quality. Moreover, it is necessary to explore the similarities and
differences of multiscale watershed units in DFSM.

7 Conclusion

This paper mainly explored the influence of using different
watershed units (HWUs and CWUs) in debris flow susceptibility
assessment models. LR, MLP, CART, and BN were chosen as
evaluation models to avoid the model uncertainty caused by
different models. Yongji county, with 129 recorded debris flows
and 13 related influencing factors, was used as the study area and
eight DFSMs were produced.

The DFSM results showed that CART has the best predictive
ability over the other three models through the analysis of AUC,
ACC and Kappa. By using Model Builder in ArcGIS, 1,092 HWUs
and 1,211 CWUs were extracted. Compared with HWUs, the
extraction process of CWUs is simpler. For the results of
watershed unit division, HWUs have more advantages in areas
with undulating terrain, but they are not satisfactory in areas with
flat terrain. CWUs perform well in flat areas but do not match the
actual watershed boundaries in areas with undulating terrain.
Since debris flows mostly occur in mountainous areas, the DFSM
based on HWUs is more accurate and practical than that based on
CWUs. In addition, the AUC, ACC and Kappa showed that the
HWU-based model has remarkably higher debris flow prediction
performance than CWUs. This result means that the HWUs are
more effective in debris flow susceptibility assessment of the

study area. The CWU-based model can also reflect the spatial
distribution probability of debris flows in the study area overall
and can be used as an alternative model. Further studies should
propose a more appropriate watershed unit for DFSM.
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