695 research outputs found

    Argon annealing of the oxygen-isotope exchanged manganite La_{0.8}Ca_{0.2}MnO_{3+y}

    Full text link
    We have resolved a controversial issue concerning the oxygen-isotope shift of the ferromagnetic transition temperature T_{C} in the manganite La_{0.8}Ca_{0.2}MnO_{3+y}. We show that the giant oxygen-isotope shift of T_C observed in the normal oxygen-isotope exchanged samples is indeed intrinsic, while a much smaller shift observed in the argon annealed samples is an artifact. The argon annealing causes the 18O sample to partially exchange back to the 16O isotope due to a small 16O contamination in the Ar gas. Such a contamination is commonly caused by the oxygen outgas that is trapped in the tubes, connectors and valves. The present results thus umambiguously demonstrate that the observed large oxygen isotope effect is an intrinsic property of manganites, and places an important constraint on the basic physics of these materials.Comment: 4 pages, 3 figures, submitted to PR

    Comments on gluon scattering amplitudes via AdS/CFT

    Full text link
    In this article we consider n gluon color ordered, planar amplitudes in N=4 super Yang Mills at strong 't Hooft coupling. These amplitudes are approximated by classical surfaces in AdS_5 space. We compute the value of the amplitude for a particular kinematic configuration for a large number of gluons and find that the result disagrees with a recent guess for the exact value of the amplitude. Our results are still compatible with a possible relation between amplitudes and Wilson loops. In addition, we also give a prescription for computing processes involving local operators and asymptotic states with a fixed number of gluons. As a byproduct, we also obtain a string theory prescription for computing the dual of the ordinary Wilson loop, Tr P exp[ i\oint A ], with no couplings to the scalars. We also evaluate the quark-antiquark potential at two loops.Comment: 27 pages, 9 figures,v3:minor correction

    Charged Higgs Observability Through Associated Production With W at a Muon Collider

    Full text link
    The observability of a charged Higgs boson produced in association with a W boson at future muon colliders is studied. The analysis is performed within the MSSM framework. The charged Higgs is assumed to decay to tb and a fully hadronic final state is analyzed, i.e., mu+mu- \rightarrow H\pmW\mp \rightarrow tbW \rightarrow WbbW \rightarrow jjjjbb. The main background is tt production in fully hadronic final state which is an irreducible background with very similar kinematic features. It is shown that although the discovery potential is almost the same for a charged Higgs mass in the range 200 GeV < mH\pm < 400 GeV, the signal significance is about 1sigma for tanbeta = 50 at integrated luminosity of 50 fb-1. The signal rate is well above that at e+e- linear colliders with the same center of mass energy and enough data (O(1 ab-1)) will provide the same discovery potential for all heavy charged Higgs masses up to mH\pm \sim 400 GeV, however, the muon collider cannot add anything to the LHC findings.Comment: 18 pages, 11 figure

    Determinant Representations of Correlation Functions for the Supersymmetric t-J Model

    Full text link
    Working in the FF-basis provided by the factorizing FF-matrix, the scalar products of Bethe states for the supersymmetric t-J model are represented by determinants. By means of these results, we obtain determinant representations of correlation functions for the model.Comment: Latex File, 41 pages, no figure; V2: minor typos corrected, V3: This version will appear in Commun. Math. Phy

    Orbital Polarons in the Metal-Insulator Transition of Manganites

    Full text link
    The metal-insulator transition in manganites is strongly influenced by the concentration of holes present in the system. Based upon an orbitally degenerate Mott-Hubbard model we analyze two possible localization scenarios to account for this doping dependence: First, we rule out that the transition is initiated by a disorder-order crossover in the orbital sector, showing that its effect on charge mobility is only small. Second, we introduce the idea of orbital polarons originating from a strong polarization of orbitals in the vicinity of holes. Considering this direct coupling between charge and orbital degree of freedom in addition to lattice effects we are able to explain well the phase diagram of manganites for low and intermediate hole concentrations

    Spin state and phase competition in TbBaCo_{2}O_{5.5} and the lanthanide series LnBaCo_{2}O_{5+\delta} (0<=\delta<=1)

    Full text link
    A clear physics picture of TbBaCo2_{2}O5.5_{5.5} is revealed on the basis of density functional theory calculations. An antiferromagnetic (AFM) superexchange coupling between the almost high-spin Co3+^{3+} ions competes with a ferromagnetic (FM) interaction mediated by both p-d exchange and double exchange, being responsible for the observed AFM-FM transition. And the metal-insulator transition is accompanied by an xy/xz orbital-ordering transition. Moreover, this picture can be generalized to the whole lanthanide series, and it is predicted that a few room-temperature magnetoresistance materials could be found in LnBa1x_{1-x}Ax_{x}Co2_{2}O5+δ_{5+\delta} (Ln=Ho,Er,Tm,Yb,Lu; A=Sr,Ca,Mg).Comment: 13 pages, 2 figures; to be published in Phys. Rev. B on 1st Sept. Title and Bylines are added to the revised versio

    Electronic structure study of double perovskites A2A_{2}FeReO6_{6} (A=Ba,Sr,Ca) and Sr2M_{2}MMoO6_{6} (M=Cr,Mn,Fe,Co) by LSDA and LSDA+U

    Full text link
    We have implemented a systematic LSDA and LSDA+U study of the double perovskites A2A_{2}FeReO6_{6} (A=Ba,Sr,Ca) and Sr2_{2}MMMoO6_{6} (M=Cr,Mn,Fe,Co) for understanding of their intriguing electronic and magnetic properties. The results suggest a ferrimagnetic (FiM) and half-metallic (HM) state of A2A_{2}FeReO6_{6} (A=Ba,Sr) due to a pdd-π\pi coupling between the down-spin Re5+^{5+}/Fe3+^{3+} t2gt_{2g} orbitals via the intermediate O 2pπ2p_{\pi} ones, also a very similar FiM and HM state of Sr2_{2}FeMoO6_{6}. In contrast, a decreasing Fe t2gt_{2g} component at Fermi level (EFE_{F}) in the distorted Ca2_{2}FeReO6_{6} partly accounts for its nonmetallic behavior, while a finite pddpdd-σ\sigma coupling between the down-spin Re5+^{5+}/Fe3+^{3+} ege_{g} orbitals being present at EFE_{F} serves to stabilize its FiM state. For Sr2_{2}CrMoO6_{6} compared with Sr2_{2}FeMoO6_{6}, the coupling between the down-spin Mo5+^{5+}/Cr3+^{3+} t2gt_{2g} orbitals decreases as a noticeable shift up of the Cr3+^{3+} 3d levels, which is likely responsible for the decreasing TCT_{C} value and weak conductivity. Moreover, the calculated level distributions indicate a Mn2+^{2+}(Co2+^{2+})/Mo6+^{6+} ionic state in Sr2_{2}MnMoO6_{6} (Sr2_{2}CoMoO6_{6}), in terms of which their antiferromagnetic insulating ground state can be interpreted. While orbital population analyses show that owing to strong intrinsic pd covalence effects, Sr2M_{2}MMoO6_{6} (M=Cr,Mn,Fe,Co) have nearly the same valence state combinations, as accounts for the similar M-independent spectral features observed in them.Comment: 21 pages, 3 figures. to be published in Phys. Rev. B on 15th Se

    Role of Orbital Degeneracy in Double Exchange Systems

    Full text link
    We investigate the role of orbital degeneracy in the double exchange (DE) model. In the JHJ_{H}\to\infty limit, an effective generalized ``Hubbard'' model incorporating orbital pseudospin degrees of freedom is derived. The model possesses an exact solution in one- and in infinite dimensions. In 1D, the metallic phase off ``half-filling'' is a Luttinger liquid with pseudospin-charge separation. Using the d=d=\infty solution for our effective model, we show how many experimental observations for the well-doped (x0.3x\simeq 0.3) three-dimensional manganites La1xSrxMnO3La_{1-x}Sr_{x}MnO_{3} can be qualitatively explained by invoking the role of orbital degeneracy in the DE model.Comment: 8 pages, 2 figures, submitted to Phys. Rev.

    Composite Spin Waves, Quasi-Particles and Low Temperature resistivity in Double Exchange Systems

    Full text link
    We make a quantum description of the electron low temperature properties of double exchange materials. In these systems there is a strong coupling between the core spin and the carriers spin. This large coupling makes the low energy spin waves to be a combination of ion and electron density spin waves. We study the form and dispersion of these composite spin wave excitations. We also analyze the spin up and down spectral functions of the temperature dependent quasi-particles of this system. Finally we obtain that the thermally activated composite spin waves renormalize the carriers effective mass and this gives rise to a low temperature resistivity scaling as T ^{5/2}.Comment: 4 pages, REVTE

    Path integrals approach to resisitivity anomalies in anharmonic systems

    Full text link
    Different classes of physical systems with sizeable electron-phonon coupling and lattice distortions present anomalous resistivity behaviors versus temperature. We study a molecular lattice Hamiltonian in which polaronic charge carriers interact with non linear potentials provided by local atomic fluctuations between two equilibrium sites. We study a molecular lattice Hamiltonian in which polaronic charge carriers interact with non linear potentials provided by local atomic fluctuations between two equilibrium sites. A path integral model is developed to select the class of atomic oscillations which mainly contributes to the partition function and the electrical resistivity is computed in a number of representative cases. We argue that the common origin of the observed resistivity anomalies lies in the time retarded nature of the polaronic interactions in the local structural instabilities.Comment: 4 figures, to appear in Phys.Rev.B, May 1st (2001
    corecore