224 research outputs found

    Universal Estimation of Directed Information

    Full text link
    Four estimators of the directed information rate between a pair of jointly stationary ergodic finite-alphabet processes are proposed, based on universal probability assignments. The first one is a Shannon--McMillan--Breiman type estimator, similar to those used by Verd\'u (2005) and Cai, Kulkarni, and Verd\'u (2006) for estimation of other information measures. We show the almost sure and L1L_1 convergence properties of the estimator for any underlying universal probability assignment. The other three estimators map universal probability assignments to different functionals, each exhibiting relative merits such as smoothness, nonnegativity, and boundedness. We establish the consistency of these estimators in almost sure and L1L_1 senses, and derive near-optimal rates of convergence in the minimax sense under mild conditions. These estimators carry over directly to estimating other information measures of stationary ergodic finite-alphabet processes, such as entropy rate and mutual information rate, with near-optimal performance and provide alternatives to classical approaches in the existing literature. Guided by these theoretical results, the proposed estimators are implemented using the context-tree weighting algorithm as the universal probability assignment. Experiments on synthetic and real data are presented, demonstrating the potential of the proposed schemes in practice and the utility of directed information estimation in detecting and measuring causal influence and delay.Comment: 23 pages, 10 figures, to appear in IEEE Transactions on Information Theor

    Effects of Personality on Social Performance in Social Trading

    Get PDF
    On social trading platforms, the income of leader traders is largely dictated by the number of copy trades conducted by their followers. Consequently, it is imperative for leader traders to exhibit appealing personalities to entice their followers to conduct copy trades. Drawing on social capital theory, we endeavor to scrutinize the effects of traders’ personalities on the accumulation of social capital, which in turn bolsters social performance as measured by the number of copy trades. Data was extracted from a leading social trading platform. The Myers–Briggs Type Indicator personality classification system was then employed to depict leader traders’ personalities based on a novel text-based, machine learning approach. Preliminary analytical results reveal significant relationships among personality traits, social capital dimensions, and social performance. Findings from this study generate insights for social trading platforms and leader traders on exhibiting desirable personalities conducive for accumulating social capital that entice followers to conduct copy trades

    Divergent Innovation: Directing the Wisdom of Crowd to Tackle Societal Challenges

    Get PDF
    Crowdsourcing is acknowledged as a promising avenue for addressing societal challenges by drawing on the wisdom of the crowd to offer diverse solutions to complex problems. Advancing a new conceptual framework of ‘divergent innovation’ which delineates between topic and quality divergence as focal metrics of performance when crowdsourcing for solutions to societal challenges, this study investigates the impacts of four ideation stimuli on divergent innovation. These four stimuli include task description concreteness, resource richness, topic entropy, and judging criteria comprehensiveness. Empirical analysis based on data sourced from an online crowd-ideation platform reveals that task description concreteness negatively affects topic divergence but positively influences quality divergence, whereas resource richness positively affects topic divergence but negatively influences quality divergence. Additionally, the relationship between topic entropy and topic divergence is U-shaped, with no significant impact on quality divergence. These findings contribute to extant literature on crowdsourcing and offer invaluable insights for practitioners

    Manipulation of the precursor supply for high-level production of longifolene by metabolically engineered \u3ci\u3eEscherichia coli\u3c/i\u3e

    Get PDF
    Longifolene is a naturally occurring tricyclic sesquiterpene widely used in many different fields. Up to now, this valuable terpene was mainly manufactured from the high-boiling fraction of certain pine resins. Microbial production can be a promising alternative to the extraction from natural plant sources. Here, we present the metabolic engineering strategy to assemble biosynthetic pathway for longifolene production in Escherichia coli. E. coli was rendered to produce longifolene by heterologously expressing a codon optimized longifolene synthase from Picea abies. Augmentation of the metabolic flux to farnesyl pyrophosphate (FPP) by different FPP synthases conferred a 1.8-fold increase in longifolene production. An additional enhancement of longifolene production (up to 2.64 mg/L) was achieved by introducing an exogenous mevalonate pathway. Under fed-batch conditions, the best-performing strain was able to produce 382 mg/L of longifolene in a 5 L bioreactor. These results demonstrated the feasibility of producing longifolene by microbial fermentation and could serve as the basis for the construction of more robust strains in the future

    Design of Sail-Assisted Unmanned Surface Vehicle Intelligent Control System

    Get PDF
    To achieve the wind sail-assisted function of the unmanned surface vehicle (USV), this work focuses on the design problems of the sail-assisted USV intelligent control systems (SUICS) and illustrates the implementation process of the SUICS. The SUICS consists of the communication system, the sensor system, the PC platform, and the lower machine platform. To make full use of the wind energy, in the SUICS, we propose the sail angle of attack automatic adjustment (Sail_4A) algorithm and present the realization flow for each subsystem of the SUICS. By using the test boat, the design and implementation of the SUICS are fulfilled systematically. Experiments verify the performance and effectiveness of our SUICS. The SUICS enhances the intelligent utility of sustainable wind energy for the sail-assisted USV significantly and plays a vital role in shipping energy-saving emission reduction requirements issued by International Maritime Organization (IMO)

    Genome-Wide Association Mapping for Tomato Volatiles Positively Contributing to Tomato Flavor

    Get PDF
    Tomato volatiles, mainly derived from essential nutrients and health-promoting precursors, affect tomato flavor. Taste volatiles present a major challenge for flavor improvement and quality breeding. In this study, we performed genome-wide association studies (GWAS) to investigate potential chromosome regions associated with the tomato flavor volatiles. We observed significant variation (1200x) among the selected 28 most important volatiles in tomato based on their concentration and odor threshold importance across our sampled accessions. Using 174 tomato accessions, GWAS identified 125 significant associations (P<0.005) among 182 SSR markers and 28 volatiles (27 volatiles with at least one significant association). Several significant associations were co-localized in previously identified quantitative trait loci (QTL). This result provides new potential candidate loci affecting the metabolism of several volatiles

    Topological Susceptibility under Gradient Flow

    Get PDF
    We study the impact of the Gradient Flow on the topology in various models of lattice field theory. The topological susceptibility χt\chi_{\rm t} is measured directly, and by the slab method, which is based on the topological content of sub-volumes ("slabs") and estimates χt\chi_{\rm t} even when the system remains trapped in a fixed topological sector. The results obtained by both methods are essentially consistent, but the impact of the Gradient Flow on the characteristic quantity of the slab method seems to be different in 2-flavour QCD and in the 2d O(3) model. In the latter model, we further address the question whether or not the Gradient Flow leads to a finite continuum limit of the topological susceptibility (rescaled by the correlation length squared, Ο2\xi^{2}). This ongoing study is based on direct measurements of χt\chi_{\rm t} in L×LL \times L lattices, at L/Ο≃6L/\xi \simeq 6.Comment: 8 pages, LaTex, 5 figures, talk presented at the 35th International Symposium on Lattice Field Theory, June 18-24, 2017, Granada, Spai

    Phase-field simulation of grain nucleation, growth, and Rayleigh distribution of U3Si2 nuclear fuel

    Get PDF
    U3Si2 is a potential accident-tolerant fuel (ATF) due to its high thermal conductivity and uranium density relative to UO2. The grain size and distribution play an essential role in the service performance of U3Si2. However, the grain evolution is quite complicated and remains unclear, which limits further application of U3Si2 in the ATF assembly. In the present work, a phase-field model is employed to investigate the nucleation and growth of grains in U3Si2. Our results show that the number of grains rises rapidly at the nucleation stage until they occupy the whole system. After that, the grain radius and area continue to grow, and the grain number decays. The grain area increases in time according to the linear law, while the mean grain radius increases with time in a power law form with the scaling growth exponent z = 0.42, which is quite close to the theoretically predicted value. Finally, we performed statistical analysis and found that the grain size evolution of U3Si2 obeys Rayleigh distribution. Our simulation not only elucidates the nucleation and evolution of grains in U3Si2 during the thermal treatment process unambiguously but also provides a fundamental study on the investigation of grain growth, subdivision, and even amorphization in the irradiated condition, which is very important for U3Si2 used as ATF in the light water reactor

    Peripheral arterial occlusive disease: Global gene expression analyses suggest a major role for immune and inflammatory responses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Peripheral arterial disease (PAD), a major manifestation of atherosclerosis, is associated with significant cardiovascular morbidity, limb loss and death. However, mechanisms underlying the genesis and progression of the disease are far from clear. Genome-wide gene expression profiling of clinical samples may represent an effective approach to gain relevant information.</p> <p>Results</p> <p>After histological classification, a total of 30 femoral artery samples, including 11 intermediate lesions, 14 advanced lesions and 5 normal femoral arteries, were profiled using Affymetrix microarray platform. Following real-time RT-PCR validation, different algorithms of gene selection and clustering were applied to identify differentially expressed genes. Under a stringent cutoff, i.e., a false discovery rate (FDR) <0.5%, we found 366 genes were differentially regulated in intermediate lesions and 447 in advanced lesions. Of these, 116 genes were overlapped between intermediate and advanced lesions, including 68 up-regulated genes and 48 down-regulated ones. In these differentially regulated genes, immune/inflammatory genes were significantly up-regulated in different stages of PAD, (85/230 in intermediate lesions, 37/172 in advanced lesions). Through literature mining and pathway analysis using different databases such as Gene Ontology (GO), and the Kyoto Encyclopedia of Gene and Genomics (KEGG), genes involved in immune/inflammatory responses were significantly enriched in up-regulated genes at different stages of PAD(p < 0.05), revealing a significant correlation between immune/inflammatory responses and disease progression. Moreover, immune-related pathways such as Toll-like receptor signaling and natural killer cell mediated cytotoxicity were particularly enriched in intermediate and advanced lesions (P < 0.05), highlighting their pathogenic significance during disease progression.</p> <p>Conclusion</p> <p>Lines of evidence revealed in this study not only support previous hypotheses, primarily based on studies of animal models and other types of arterial disease, that inflammatory responses may influence the development of PAD, but also permit the recognition of a wide spectrum of immune/inflammatory genes that can serve as signatures for disease progression in PAD. Further studies of these signature molecules may eventually allow us to develop more sophisticated protocols for pharmaceutical interventions.</p
    • 

    corecore