10 research outputs found

    CLINICAL STUDY OF THE HYPOTHESIS OF ENDOGENOUS COLLATERAL WIND ON ACUTE CORONARY SYNDROME

    Get PDF
    Background: Acute Coronary Syndrome (ACS), is a serious threat to people's health, and life, and in recent years, the incidence has increased yearly. This study was to propose the hypothesis of “endogenous collateral wind” based on the patho-mechanism of thrombogenesis complicated by ruptured plaque on ACS, and the theory of traditional Chinese medicine. Materials and Methods: Through successful coronary angiography (CAG), and intravascular ultrasound (IVUS),patients with coronary artery disease were made the differential diagnosis such as blood stasis, blood stasis due to phlegm obstruction, and endogenous collateral wind. The levels of plasma inflammatory marker were measured to study on the characteristics of “endogenous collateral wind”. Luo heng dripping pills with promoting blood circulation to expel wind-evil, and remove wetness were made based on the hypothesis of “endogenous collateral wind” on ACS. Patients with unstable angina were randomly divided into 3, groups based on therapeutic methods: conventional therapy group, Luo Heng dripping pills group and Tongxinluo caps. Differences among groups were compared. Results: There were great changes in number and degree of coronary arteriostenosis confirmed by CAG, the types of ACC/AHA lesion and Levin lesion confirmed by CAG, remodeling index, positive or negative remodeling percentage measured by IVUS, the plasma levels of plasma inflammatory marker measured by ELLSA in the patients with endogenous collateral wind, compared with patients with blood stasis and blood stasis due to phlegm obstruction. The total effective rate of improved angina in Luo Heng dripping pills group was significantly higher than those in other two groups. The levels of plasma inflammatory marker were significantly lower in Luo Heng dripping pills group. Conclusion: There were some pathological basis which were found about the hypothesis of “endogenous collateral wind” on acute coronary syndrome. It provided evidences for patients with coronary artery disease treated by medicines with expelling evil-wind, and removing wetness

    Transcriptome analysis to identify candidate genes related to mammary gland development of Bactrian camel (Camelus bactrianus)

    Get PDF
    IntroductionThe demand for camel milk, which has unique therapeutic properties, is increasing. The mammary gland is the organ in mammals responsible for the production and quality of milk. However, few studies have investigated the genes or pathways related to mammary gland growth and development in Bactrian camels. This study aimed to compare the morphological changes in mammary gland tissue and transcriptome expression profiles between young and adult female Bactrian camels and to explore the potential candidate genes and signaling pathways related to mammary gland development.MethodsThree 2  years-old female camels and three 5  years-old adult female camels were maintained in the same environment. The parenchyma of the mammary gland tissue was sampled from the camels using percutaneous needle biopsy. Morphological changes were observed using hematoxylin-eosin staining. High-throughput RNA sequencing was performed using the Illumina HiSeq platform to analyze changes in the transcriptome between young and adult camels. Functional enrichment, pathway enrichment, and protein–protein interaction networks were also analyzed. Gene expression was verified using quantitative real-time polymerase chain reaction (qRT-PCR).ResultsHistomorphological analysis showed that the mammary ducts and mammary epithelial cells in adult female camels were greatly developed and differentiated from those in young camels. Transcriptome analysis showed that 2,851 differentially expressed genes were obtained in the adult camel group compared to the young camel group, of which 1,420 were upregulated, 1,431 were downregulated, and 2,419 encoded proteins. Functional enrichment analysis revealed that the upregulated genes were significantly enriched for 24 pathways, including the Hedgehog signaling pathway which is closely related to mammary gland development. The downregulated genes were significantly enriched for seven pathways, among these the Wnt signaling pathway was significantly related to mammary gland development. The protein–protein interaction network sorted the nodes according to the degree of gene interaction and identified nine candidate genes: PRKAB2, PRKAG3, PLCB4, BTRC, GLI1, WIF1, DKK2, FZD3, and WNT4. The expression of fifteen genes randomly detected by qRT-PCR showed results consistent with those of the transcriptome analysis.DiscussionPreliminary findings indicate that the Hedgehog, Wnt, oxytocin, insulin, and steroid biosynthesis signaling pathways have important effects on mammary gland development in dairy camels. Given the importance of these pathways and the interconnections of the involved genes, the genes in these pathways should be considered potential candidate genes. This study provides a theoretical basis for elucidating the molecular mechanisms associated with mammary gland development and milk production in Bactrian camels

    Acute myocardial infarction in a young woman with rheumatoid arthritis

    No full text
    A 27-year-old Chinese woman was admitted for an episode of prolonged chest pain, accompanied by sweating and nausea for 5 h. Her blood pressure was 110/70 mm Hg symmetrical over both arms and her pulse was 70 beats/min. Her physical examination was normal. The electrocardiogram showed sinus rhythm with ST-segment elevation in leads V1–V5. The laboratory data revealed a cardiac troponin I of 0.9 ng/ml (relative index < 0.02 ng/ml), a creatine kinase MB of 146.0 ng/ml (relative index < 7.0 ng/ml), and a myoglobin of 682.0 ng/ml (relative index < 112.0 ng/ml). 

    Transcriptome analysis of the Bactrian camel (Camelus bactrianus) reveals candidate genes affecting milk production traits

    No full text
    Abstract Background Milk production traits are complex traits with vital economic importance in the camel industry. However, the genetic mechanisms regulating milk production traits in camels remain poorly understood. Therefore, we aimed to identify candidate genes and metabolic pathways that affect milk production traits in Bactrian camels. Methods We classified camels (fourth parity) as low- or high-yield, examined pregnant camels using B-mode ultrasonography, observed the microscopic changes in the mammary gland using hematoxylin and eosin (HE) staining, and used RNA sequencing to identify differentially expressed genes (DEGs) and pathways. Results The average standard milk yield over the 300 days during parity was recorded as 470.18 ± 9.75 and 978.34 ± 3.80 kg in low- and high-performance camels, respectively. Nine female Junggar Bactrian camels were subjected to transcriptome sequencing, and 609 and 393 DEGs were identified in the low-yield vs. high-yield (WDL vs. WGH) and pregnancy versus colostrum period (RSQ vs. CRQ) comparison groups, respectively. The DEGs were compared with genes associated with milk production traits in the Animal Quantitative Trait Loci database and in Alashan Bactrian camels, and 65 and 46 overlapping candidate genes were obtained, respectively. Functional enrichment and protein–protein interaction network analyses of the DEGs and candidate genes were conducted. After comparing our results with those of other livestock studies, we identified 16 signaling pathways and 27 core candidate genes associated with maternal parturition, estrogen regulation, initiation of lactation, and milk production traits. The pathways suggest that emerged milk production involves the regulation of multiple complex metabolic and cellular developmental processes in camels. Finally, the RNA sequencing results were validated using quantitative real-time PCR; the 15 selected genes exhibited consistent expression changes. Conclusions This study identified DEGs and metabolic pathways affecting maternal parturition and milk production traits. The results provides a theoretical foundation for further research on the molecular mechanism of genes related to milk production traits in camels. Furthermore, these findings will help improve breeding strategies to achieve the desired milk yield in camels. Graphical Abstrac

    MicroRNAs activate gene transcription epigenetically as an enhancer trigger

    No full text
    <p>MicroRNAs (miRNAs) are small non-coding RNAs that function as negative gene expression regulators. Emerging evidence shows that, except for function in the cytoplasm, miRNAs are also present in the nucleus. However, the functional significance of nuclear miRNAs remains largely undetermined. By screening miRNA database, we have identified a subset of miRNA that functions as enhancer regulators. Here, we found a set of miRNAs show gene-activation function. We focused on miR-24-1 and found that this miRNA unconventionally activates gene transcription by targeting enhancers. Consistently, the activation was completely abolished when the enhancer sequence was deleted by TALEN. Furthermore, we found that miR-24-1 activates enhancer RNA (eRNA) expression, alters histone modification, and increases the enrichment of p300 and RNA Pol II at the enhancer locus. Our results demonstrate a novel mechanism of miRNA as an enhancer trigger.</p
    corecore