3,465 research outputs found

    Quantum spin Hall effect and spin-charge separation in a kagome lattice

    Full text link
    A two-dimensional kagome lattice is theoretically investigated within a simple tight-binding model, which includes the nearest neighbor hopping term and the intrinsic spin-orbit interaction between the next nearest neighbors. By using the topological winding properties of the spin-edge states on the complex-energy Riemann surface, the spin Hall conductance is obtained to be quantized as e/2π-e/2\pi (e/2πe/2\pi) in insulating phases. This result keeps consistent with the numerical linear-response calculation and the \textbf{Z}2_{2} topological invariance analysis. When the sample boundaries are connected in twist, by which two defects with π\pi flux are introduced, we obtain the spin-charge separated solitons at 1/3 (or 2/3) filling.Comment: 13 NJP pages, 7 figure

    Inflationary attractor in Gauss-Bonnet brane cosmology

    Full text link
    The inflationary attractor properties of the canonical scalar field and Born-Infeld field are investigated in the Randall-Sundrum II scenario with a Gauss-Bonnet term in the bulk action. We find that the inflationary attractor property will always hold for both the canonical and Born-Infeld fields for any allowed non-negative Gauss-Bonnet coupling. We also briefly discuss the possibility of explaining the suppressed lower multiples and running scalar spectral index simultaneously in the scenario of Gauss-Bonnet brane inflation.Comment: 7 pages, no figures. An error in the discussion of BI field corrected, conclusion correcte

    Discovery of delayed spin-up behavior following two large glitches in the Crab pulsar, and the statistics of such processes

    Full text link
    Glitches correspond to sudden jumps of rotation frequency (ν\nu) and its derivative (ν˙\dot{\nu}) of pulsars, the origin of which remains not well understood yet, partly because the jump processes of most glitches are not well time-resolved. There are three large glitches of the Crab pulsar, detected in 1989, 1996 and 2017, which were found to have delayed spin-up processes before the normal recovery processes. Here we report two additional glitches of the Crab pulsar occurred in 2004 and 2011 for which we discovered delayed spin up processes, and present refined parameters of the largest glitch occurred in 2017. The initial rising time of the glitch is determined as <0.48<0.48 hour. We also carried out a statistical study of these five glitches with observed spin-up processes. The two glitches occurred in 2004 and 2011 have delayed spin-up time scales (τ1\tau_{1}) of 1.7±0.81.7\pm0.8\,days and 1.6±0.41.6\pm0.4\,days, respectively. We find that the Δν\Delta{\nu} vs. Δν˙|\Delta{\dot\nu}| relation of these five glitches is similar to those with no detected delayed spin-up process, indicating that they are similar to the others in nature except that they have larger amplitudes. For these five glitches, the amplitudes of the delayed spin-up process (Δνd1|\Delta{\nu}_{\rm d1}|) and recovery process (Δνd2\Delta{\nu}_{\rm d2}), their time scales (τ1\tau_{1}, τ2\tau_{2}), and permanent changes in spin frequency (Δνp\Delta{\nu}_{\rm p}) and total frequency step (Δνg\Delta{\nu}_{\rm g}) have positive correlations. From these correlations, we suggest that the delayed spin-up processes are common for all glitches, but are too short and thus difficult to be detected for most glitches.Comment: 25 pages, 8 figure

    Observation of an anomalous line shape of the ηπ+π\eta^{\prime}\pi^{+}\pi^{-} mass spectrum near the ppˉp\bar{p} mass threshold in J/ψγηπ+πJ/\psi\rightarrow\gamma\eta^{\prime}\pi^{+}\pi^{-}

    Get PDF
    Using 1.09×1091.09\times10^{9} J/ψJ/\psi events collected by the BESIII experiment in 2012, we study the J/ψγηπ+πJ/\psi\rightarrow\gamma\eta^{\prime}\pi^{+}\pi^{-} process and observe a significant abrupt change in the slope of the ηπ+π\eta^{\prime}\pi^{+}\pi^{-} invariant mass distribution at the proton-antiproton (ppˉp\bar{p}) mass threshold. We use two models to characterize the ηπ+π\eta^{\prime}\pi^{+}\pi^{-} line shape around 1.85 GeV/c21.85~\text{GeV}/c^{2}: one which explicitly incorporates the opening of a decay threshold in the mass spectrum (Flatt\'{e} formula), and another which is the coherent sum of two resonant amplitudes. Both fits show almost equally good agreement with data, and suggest the existence of either a broad state around 1.85 GeV/c21.85~\text{GeV}/c^{2} with strong couplings to ppˉp\bar{p} final states or a narrow state just below the ppˉp\bar{p} mass threshold. Although we cannot distinguish between the fits, either one supports the existence of a ppˉp\bar{p} molecule-like state or bound state with greater than 7σ7\sigma significance

    Study of J/ψJ/\psi and ψ(3686)Σ(1385)0Σˉ(1385)0\psi(3686)\rightarrow\Sigma(1385)^{0}\bar\Sigma(1385)^{0} and Ξ0Ξˉ0\Xi^0\bar\Xi^{0}

    Full text link
    We study the decays of J/ψJ/\psi and ψ(3686)\psi(3686) to the final states Σ(1385)0Σˉ(1385)0\Sigma(1385)^{0}\bar\Sigma(1385)^{0} and Ξ0Ξˉ0\Xi^0\bar\Xi^{0} based on a single baryon tag method using data samples of (1310.6±7.0)×106(1310.6 \pm 7.0) \times 10^{6} J/ψJ/\psi and (447.9±2.9)×106(447.9 \pm 2.9) \times 10^{6} ψ(3686)\psi(3686) events collected with the BESIII detector at the BEPCII collider. The decays to Σ(1385)0Σˉ(1385)0\Sigma(1385)^{0}\bar\Sigma(1385)^{0} are observed for the first time. The measured branching fractions of J/ψJ/\psi and ψ(3686)Ξ0Ξˉ0\psi(3686)\rightarrow\Xi^0\bar\Xi^{0} are in good agreement with, and much more precise, than the previously published results. The angular parameters for these decays are also measured for the first time. The measured angular decay parameter for J/ψΣ(1385)0Σˉ(1385)0J/\psi\rightarrow\Sigma(1385)^{0}\bar\Sigma(1385)^{0}, α=0.64±0.03±0.10\alpha =-0.64 \pm 0.03 \pm 0.10, is found to be negative, different to the other decay processes in this measurement. In addition, the "12\% rule" and isospin symmetry in the J/ψJ/\psi and ψ(3686)ΞΞˉ\psi(3686)\rightarrow\Xi\bar\Xi and Σ(1385)Σˉ(1385)\Sigma(1385)\bar{\Sigma}(1385) systems are tested.Comment: 11 pages, 7 figures. This version is consistent with paper published in Phys.Lett. B770 (2017) 217-22

    Improved measurement of the absolute branching fraction of D+Kˉ0μ+νμD^{+}\rightarrow \bar K^0 \mu^{+}\nu_{\mu}

    Get PDF
    By analyzing 2.93 fb1^{-1} of data collected at s=3.773\sqrt s=3.773 GeV with the BESIII detector, we measure the absolute branching fraction B(D+Kˉ0μ+νμ)=(8.72±0.07stat.±0.18sys.)%{\mathcal B}(D^{+}\rightarrow\bar K^0\mu^{+}\nu_{\mu})=(8.72 \pm 0.07_{\rm stat.} \pm 0.18_{\rm sys.})\%, which is consistent with previous measurements within uncertainties but with significantly improved precision. Combining the Particle Data Group values of B(D0Kμ+νμ){\mathcal B}(D^0\to K^-\mu^+\nu_\mu), B(D+Kˉ0e+νe){\mathcal B}(D^{+}\rightarrow\bar K^0 e^{+}\nu_{e}), and the lifetimes of the D0D^0 and D+D^+ mesons with the value of B(D+Kˉ0μ+νμ){\mathcal B}(D^{+}\rightarrow\bar K^0 \mu^{+}\nu_{\mu}) measured in this work, we determine the following ratios of partial widths: Γ(D0Kμ+νμ)/Γ(D+Kˉ0μ+νμ)=0.963±0.044\Gamma(D^0\to K^-\mu^+\nu_\mu)/\Gamma(D^{+}\rightarrow\bar K^0\mu^{+}\nu_{\mu})=0.963\pm0.044 and Γ(D+Kˉ0μ+νμ)/Γ(D+Kˉ0e+νe)=0.988±0.033\Gamma(D^{+}\rightarrow\bar K^0 \mu^{+}\nu_{\mu})/\Gamma(D^{+}\rightarrow\bar K^0 e^{+}\nu_{e})=0.988\pm0.033.Comment: 9 pages; 8 figure

    Observation of hch_{c} radiative decay hcγηh_{c} \rightarrow \gamma \eta' and evidence for hcγηh_{c} \rightarrow \gamma \eta

    Get PDF
    A search for radiative decays of the PP-wave spin singlet charmonium resonance hch_c is performed based on 4.48×1084.48 \times 10^{8} ψ\psi' events collected with the BESIII detector operating at the BEPCII storage ring. Events of the reaction channels hcγηh_{c} \rightarrow \gamma \eta' and γη\gamma \eta are observed with a statistical significance of 8.4σ8.4 \sigma and 4.0σ4.0 \sigma, respectively, for the first time. The branching fractions of hcγηh_{c} \rightarrow \gamma \eta' and hcγηh_{c} \rightarrow \gamma \eta are measured to be B(hcγη)=(1.52±0.27±0.29)×103\mathcal{B}(h_{c} \rightarrow \gamma \eta')=(1.52 \pm 0.27 \pm 0.29)\times10^{-3} and B(hcγη)=(4.7±1.5±1.4)×104\mathcal{B}(h_{c} \rightarrow \gamma \eta)=(4.7 \pm 1.5 \pm 1.4)\times10^{-4}, respectively, where the first errors are statistical and the second are systematic uncertainties.Comment: 7 pages, 2 figure

    Higher-order multipole amplitude measurement in ψ(2S)γχc2\psi(2S)\to\gamma\chi_{c2}

    Full text link
    Using 106×106106\times10^6 ψ(2S)\psi(2S) events collected with the BESIII detector at the BEPCII storage ring, the higher-order multipole amplitudes in the radiative transition ψ(2S)γχc2γππ/γKK\psi(2S)\to\gamma\chi_{c2}\to\gamma\pi\pi/\gamma KK are measured. A fit to the χc2\chi_{c2} production and decay angular distributions yields M2=0.046±0.010±0.013M2=0.046\pm0.010\pm0.013 and E3=0.015±0.008±0.018E3=0.015\pm0.008\pm0.018, where the first errors are statistical and the second systematic. Here M2M2 denotes the normalized magnetic quadrupole amplitude and E3E3 the normalized electric octupole amplitude. This measurement shows evidence for the existence of the M2M2 signal with 4.4σ4.4\sigma statistical significance and is consistent with the charm quark having no anomalous magnetic moment.Comment: 14 pages, 4 figure

    Amplitude Analysis of the Decays ηπ+ππ0\eta^\prime \rightarrow \pi^+\pi^-\pi^0 and ηπ0π0π0\eta^\prime \rightarrow \pi^0\pi^0\pi^0

    Get PDF
    Based on a sample of 1.31×1091.31 \times 10^9 J/ψJ/\psi events collected with the BESIII detector, an amplitude analysis of the isospin-violating decays ηπ+ππ0\eta^\prime \rightarrow \pi^+\pi^-\pi^0 and ηπ0π0π0\eta^\prime \rightarrow \pi^0\pi^0\pi^0 is performed. A significant PP-wave contribution from ηρ±π\eta^\prime \rightarrow \rho^{\pm} \pi^{\mp} is observed for the first time in ηπ+ππ0\eta^\prime \rightarrow \pi^+\pi^-\pi^0. The branching fraction is determined to be B(ηρ±π)=(7.44±0.60±1.26±1.84)×104{\mathcal B}(\eta^\prime \rightarrow \rho^{\pm}\pi^{\mp})=(7.44\pm0.60\pm1.26\pm1.84)\times 10^{-4}, where the first uncertainty is statistical, the second systematic, and the third model dependent. In addition to the nonresonant SS-wave component, there is a significant σ\sigma meson component. The branching fractions of the combined SS-wave components are determined to be B(ηπ+ππ0)S=(37.63±0.77±2.22±4.48)×104{\mathcal B}(\eta^\prime \rightarrow \pi^+\pi^-\pi^0)_S=(37.63\pm0.77\pm2.22\pm4.48)\times 10^{-4} and B(ηπ0π0π0)=(35.22±0.82±2.54)×104{\mathcal B}(\eta^\prime \rightarrow \pi^0\pi^0\pi^0)=(35.22\pm0.82\pm2.54)\times 10^{-4}, respectively. The latter one is consistent with previous BESIII measurements.Comment: 7 pages, 3 figure
    corecore