1,537 research outputs found

    Actin at cell-cell junctions is composed of two dynamic and functional populations

    Get PDF
    The ability of epithelial cells to polarize requires cell-cell adhesion mediated by cadherin receptors. During cell-cell contact, the mechanism via which a flat, spread cell shape is changed into a tall, cuboidal epithelial morphology is not known. We found that cadherin-dependent adhesion modulates actin dynamics by triggering changes in actin organization both locally at junctions and within the rest of the cell. Upon induction of cell-cell contacts, two spatial actin populations are distinguishable: junctional actin and peripheral thin bundles. With time, the relative position of these two populations changes and becomes indistinguishable to form a cortical actin ring that is characteristic of mature, fully polarized epithelial cells. Junctional actin and thin actin bundles differ in their actin dynamics and mechanism of formation, and interestingly, have distinct roles during epithelial polarization. Whereas junctional actin stabilizes clustered cadherin receptors at cell-cell contacts, contraction of peripheral actin bundle is essential for an increase in the maximum height at the lateral domain during polarization (cuboidal morphology). Thus, both junctional actin and thin bundles are necessary, and cooperate with each other to generate a polarized epithelial morphology

    Non-traditional systemic risk contagion within the Chinese banking industry

    Get PDF
    Systemic risk contagion is a key issue in the banking sector in maintaining financial system stability. This study is among the first few to use three different distance-to-risk measures to empirically assess the domestic interbank linkages and systemic contagion risk of the Chinese banking industry, by using bivariate dynamic conditional correlation GARCH model on data collected from eight prominent Chinese banks for the period 2006–2018. The results show a relatively high correlation among almost all the banks, suggesting an interconnectedness among the banks. We found evidence that the banking system is exposed to significant domestic contagion risks arising from systemic defaults. Given that Chinese markets deliver weak signals of forthcoming stress in banking sectors, new policy intervention is crucial to resolve the hidden stress in the system. The results have important policy implications and will provide scholars and policymakers further insight into the risk contagion originating from interbank networks

    Scaling and exact solutions for the flux creep problem in a slab superconductor

    Full text link
    The flux creep problem for a superconductor slab placed in a constant or time-dependent magnetic field is considered. Logarithmic dependence of the activation energy on the current density is assumed, U=U0 ln(J/Jc), with a field dependent Jc. The density B of the magnetic flux penetrating into the superconductor, is shown to obey a scaling law, i.e., the profiles B(x) at different times can be scaled to a function of a single variable. We found exact solution for the scaling function in some specific cases, and an approximate solution for a general case. The scaling also holds for a slab carrying transport current I resulting in a power-law V(I) with exponent p~1. When the flux fronts moving from two sides of the slab collapse at the center, the scaling is broken and p crosses over to U0/kT.Comment: RevTex, 10 pages including 6 figures, submitted to Phys.Rev.

    Detection of relic gravitational waves in the CMB: Prospects for CMBPol mission

    Full text link
    Detection of relic gravitational waves, through their imprint in the cosmic microwave background radiation, is one of the most important tasks for the planned CMBPol mission. In the simplest viable theoretical models the gravitational wave background is characterized by two parameters, the tensor-to-scalar ratio rr and the tensor spectral index ntn_t. In this paper, we analyze the potential joint constraints on these two parameters, rr and ntn_t, using the potential observations of the CMBPol mission, which is expected to detect the relic gravitational waves if r0.001r\gtrsim0.001. The influence of the contaminations, including cosmic weak lensing, various foreground emissions, and systematical errors, is discussed.Comment: 26 pages, 19 figures, 4 tables; JCAP in pres

    wd=1w_d=-1 in interacting quintessence model

    Full text link
    A model consisting of quintessence scalar field interacting with cold dark matter is considered. Conditions required to reach wd=1w_d=-1 are discussed. It is shown that depending on the potential considered for the quintessence, reaching the phantom divide line puts some constraints on the interaction between dark energy and dark matter. This also may determine the ratio of dark matter to dark energy density at wd=1w_d=-1.Comment: 10 pages, references updated, some notes added, minor changes applied, accepted for publication in Eur. Phys. J.

    History effect in inhomogeneous superconductors

    Full text link
    A model was proposed to account for a new kind of history effect in the transport measurement of a sample with inhomogeneous flux pinning coupled with flux creep. The inhomogeneity of flux pinning was described in terms of alternating weak pinning (lower jc) and strong pinning region (higher jc). The flux creep was characterized by logarithmic barrier. Based on this model, we numerically observed the same clockwise V-I loops as reported in references. Moreover, we predicted behaviors of the V-I loop at different sweeping rates of applied current dI/dt or magnetic fields Ba, etc. Electric transport measurement was performed in Ag-sheathed Bi2-xPbxSr2Ca2Cu3Oy tapes immersed in liquid nitrogen with and without magnetic fields. V-I loop at certain dI/dt and Ba was observed. It is found that the area of the loop is more sensitive to dI/dt than to Ba, which is in agreement well with our numerical results.Comment: To appear in Phys Rev B, October 1 Issu

    Constraints on coupling constant between dark energy and dark matter

    Full text link
    We have investigated constraints on the coupling between dark matter and the interacting Chaplygin gas. Our results indicate that the coupling constant cc between these two entities can take arbitrary values, which can be either positive or negative, thus giving arbitrary freedom to the inter-conversion between Chaplygin gas and dark matter. Thus our results indicate that the restriction 0<c<10<c<1 on the coupling constant occurs as a very special case. Our analysis also supports the existence of phantom energy under certain conditions on the coupling constant.Comment: 16 Pages, 3 figure

    Simple Method to Extract Lake Ice Condition from Landsat Images

    Get PDF
    Ice plays key roles in regulating hydrological, ecological, biogeochemical, and socioeconomic functions of lakes. Long-term in situ lake ice phenological records indicate that lake ice is trending toward later freeze-up, earlier breakup, and a shorter ice duration. Parallel to study of lake ice using in situ records and process-based models, satellite remote sensing can expand our understanding of lake ice change over large spatial scales. However, most remote sensing studies have focused on large lakes or short periods of time, which may not robustly represent changes over multidecadal time periods or in the much more numerous small lakes. Here, we present a random forest model, Sensitive Lake Ice Detection (SLIDE), to accurately extract ice conditions from Landsat TM, ETM+, and OLI images. We trained the model using a manually labeled lake ice dataset (1089 labeled areas over 995 lakes globally). Our results show that our model achieves accurate classification between ice/snow and water (accuracy: 97.8%, kappa coefficient: 95.5%). Comparing Landsat-derived ice cover with in situ ice conditions, we show that our model produces less bias, lower RMSE, and higher kappa than does the Landsat snow/ice flag from the quality assessment band. This is especially true during the transitional period surrounding the ice on and off dates reported from in situ (mean bias -7.3% from our model, -17.3% from the Landsat quality band). Our results demonstrate the feasibility of mining the rich Landsat archive to study lake ice dynamics and of better flagging ice-affected lake observations

    Proximity to a Nearly Superconducting Quantum Critical Liquid

    Full text link
    The coupling between superconductors and a quantum critical liquid that is nearly superconducting provides natural interpretation for the Josephson effect over unexpectedly long junctions, and the remarkable stripe-spacing dependence of the critical temperature in LSCO and YBCO superconductors.Comment: four two-column pages, no figure

    Graphene nanoribbons with zigzag and armchair edges prepared by scanning tunneling microscope lithography on gold substrates

    Get PDF
    The properties of graphene nanoribbons are dependent on both the nanoribbon width and the crystallographic orientation of the edges. Scanning tunneling microscope lithography is a method which is able to create graphene nanoribbons with well defined edge orientation, having a width of a few nanometers. However, it has only been demonstrated on the top layer of graphite. In order to allow practical applications of this powerful lithography technique, it needs to be implemented on single layer graphene. We demonstrate the preparation of graphene nanoribbons with well defined crystallographic orientation on top of gold substrates. Our transfer and lithography approach brings one step closer the preparation of well defined graphene nanoribbons on arbitrary substrates for nanoelectronic applications
    corecore