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Abstract— Consistent estimation of water surface area from
remote sensing remains challenging in regions such as South
Asia with vegetation, mountainous topography, and persistent
monsoonal cloud cover. High-resolution optical imagery, which
is often used for global inundation mapping, is highly impacted
by clouds, while synthetic aperture radar (SAR) imagery is not
impacted by clouds and is affected by both topographic layover
and vegetation. Here, we compare and contrast inundation extent
measurements from visible (Landsat-8 and Sentinel-2) and SAR
(Sentinel-1) imagery. Each data type (wavelength) has comple-
mentary strengths and weaknesses which were gauged separately
over selected water bodies in Bangladesh. High-resolution cloud-
free PlanetScope imagery at 3-m resolution was used as a
reference to check the accuracy of each technique and data type.
Next, the optical and radar images were fused for a rule-based
water area classification algorithm to derive the optimal decision
for the water mask. Results indicate that the fusion approach
can improve the overall accuracy by up to 3.8%, 18.2%, and
8.3% during the wet season over using the individual products
of Landsat8, Sentinel-1, and Sentinel-2, respectively, at three
sites, while providing increased observational frequency. The
fusion-derived products resulted in overall accuracy ranging from
85.8% to 98.7% and Kappa coefficient varying from 0.61 to
0.83. The proposed SAR-visible fusion technique has potential for
improving satellite-based surface water monitoring and storage
changes, especially for smaller water bodies in humid tropical
climate of South Asia.

Index Terms— Area classification, remote sensing, synthetic
aperture radar (SAR), visible imagery, water bodies.

I. INTRODUCTION

WETLANDS and small surface water bodies play an
important role in groundwater recharge, flood control,

ecosystem services, wildlife habitat, and even rural liveli-
hood [1], [2]. Knowledge of the areal extent or size of
water bodies is crucial to the understanding of access and
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availability of water in the natural environment. However,
manual identification and tracking of these numerous water
bodies in a feasible and cost-effective way is challenging due
to their dynamic inundation extent and depth controlled by the
local hydrology of the region [3].

To address the challenges of manual identification, satel-
lite remote sensing can be a valuable tool for automated
extraction of water surface area. Satellites are particularly
effective where in situ measurement networks for water sur-
face elevation (which can be used to derive surface area in
concert with a digital elevation model) are limited. In the
past two decades, the use of optical and synthetic aperture
radar (SAR) satellite remote sensing data has expanded for
mapping and monitoring wetlands [1]. The usage of satellite
imagery at optical wavelengths for water body delineation
has been primarily derived from band ratios and indices
that use the differences in spectral signature of water and
surrounding features [18], [35]. The Landsat satellite products
have, therefore, been extensively explored for monitoring lake
dynamics [13]–[15], [19], [36], [37]. A detailed review of the
literature on monitoring of surface water using optical sensors
is presented in [8]. Although optical data have proven itself for
areal classification of water bodies [3], the presence of vegeta-
tion and cloud cover in the scene can seriously limit scientific
applications [8]. While the former obscures the inundation
underneath the vegetation, blocking and shadow effects by
clouds can reduce the image information and seriously impact
the mapped water extent.

SAR data, on the other hand, collected by active sensors
at longer wavelengths, are able to penetrate the clouds and
vegetation to varying degrees, working both diurnally and
nocturnally. Water, which has a high dielectric constant and is
a specular reflector at the wavelengths of most SAR sensors,
often produces very low backscatter, which aids in extracting
the water bodies from sensed radar data [16]. Shen et al. [20]
reviewed the existing literature for principles and methods in
the SAR-based inundation mapping. Despite the advantages
of active SAR data in mapping water extent, the side-looking
geometry and the requirement of specular reflection may lead
to misclassification of some water surface areas as radar
shadow due to waves, uneven surface, vegetation (commission
error), and layover or topography (omission error) [3], [16].
Extracting inundation extent using only one type of data
(visible or SAR), therefore, provides limited value when the
region has persistent clouds or mountainous topography and
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vegetation around the water body. Such conditions are notably
pronounced in tropical humid climates of South Asia, such as
Bangladesh.

Mapping surface water bodies in South Asian environment
presents a unique challenge. The tropical monsoon climate
with strong seasonal cycle leads to a highly dynamic response
of lakes and wetlands. The lake inundation expands swiftly
over the peak flow season from May to October and then dries
up as the monsoon recedes. The surface of the lakes usually
hosts an abundance of dense vegetation, often in the form of
thick free-floating plants that obstruct the inundation beneath
from being accurately mapped. Given the high number of such
small-scale bodies present in the region [see Fig. 1(d)], their
monitoring is both challenging and important for the effective
management of water and ecosystems.

In an effort to develop a more robust water extraction
technique that is tailored to overcome challenges in humid
tropical climates of South Asia, we aim to fuse complemen-
tary strengths of remote sensing data types. Various studies
have targeted fusion of multiple sensor products for vari-
ous goals, such as shoreline extraction [4], change detec-
tion [5], retrieving daily normalized difference vegetation
index (NDVI) and leaf area index (LAI) [6], and temporal
aggregation for land cover mapping [7]. Studies by Kaplan
and Avdan [1], Huang et al. [8], and Irwin et al. [12] have
monitored wetlands and surface water by different fusion
techniques. Huang et al. [21] presented an automated classifi-
cation of SAR data trained using prior surface water masks
derived from Shuttle Radar Topography Mission (SRTM)
water body data set (SWBD), and Landsat 8 derived compos-
ited dynamic surface water extent (DSWE) class probabilities
and tested it on North American sites representing inland and
coastal wet landscape. Slinski et al. [27] used passive Landsat
and active SAR data in a clustering analysis to generate water
masks in the drier climates of Ethiopia. Despite a large body
of the literature on the fusion of remote sensing products,
no study, to the best of author knowledge, has explored water
bodies or wetlands of South Asia impacted by both monsoonal
cloud cover and dense vegetation and has smaller extents.
This article assesses a fusion technique to address water area
classification in regions, where cloud cover and vegetation are
major challenges in remote sensing-based monitoring of water
bodies. Unlike other published methods, the computational and
data storage constraints were addressed in our approach by
using the cloud-based computing platform of Google Earth
Engine (GEE) [9] and a computationally efficient rule-based
classification approach.

II. STUDY AREAS AND DATA SOURCES

A. Test Sites
The accuracy and robustness of the proposed approach were

tested on three lakes/wetlands (also locally termed “Haors”)
with varying water extents located in northeastern Bangladesh
(Fig. 1). Haors are seasonal water bodies with dual-land use
during the course of a year [28]. From the months of May to
October, the low-elevation land is inundated with transbound-
ary runoff generated by the monsoon rains from mountains in
neighboring India. These water bodies become a productive

fisheries ecosystem during the monsoon season [28]. As the
waters recede in the postmonsoon season spanning Novem-
ber to April, the soil becomes rich in nutrients and organic
matter. The Haor land becomes primed for rice cultivation
from groundwater that is recharged by the preceding monsoon
rains. The rice cultivation during this season (known as Boro
rice) is existential to food security of Bangladesh [29], [30].
Hence, accurate and automated mapping of the spatial extent
of Haors in the context of changing land use can inform
policy decisions for managing postmonsoon water availability,
premonsoon flash floods, and rice cultivation.

The “true” boundaries of all the test water bodies, encom-
passing the wet season extent, were digitized manually from
reference data that are described in Section II-B. The maxi-
mum extents used for the water extraction analysis were 65.6,
7, and 1.3 km2 for Korchar, Dekhar, and Ashulia Haors. The
locations and digitized water boundaries of each site are shown
in Fig. 1(a)–(c).

B. Tools and Data Used

We used three satellite remote sensing products with dif-
ferent spatial, temporal, and spectral characteristics. These
include: 1) Landsat 8 Operational Land Imager (OLI) Tier 1
surface reflectance and top of atmosphere (TOA) reflectance,
with 30-m spatial resolution and 8–16-day revisit period (here-
after “L8”); 2) Sentinel-1A C-band synthetic aperture radar
ground-range detected (SAR GRD) with a spatial resolution
of 10 m and 6-day revisit period (labeled as “S1”); and
3) Sentinel-2 multispectral instrument (MSI, Level-1C) with a
spatial resolution of 10 m (for red, green, blue (RGB) and
near-infrared (NIR) bands) and revisit period of five days
(labeled as “S2”). These visible, NIR, and SAR sensors were
chosen due to the public availability of their data and their
complementary strengths in water detection. The three satellite
products were retrieved for a three-year time period spanning
2016 to 2018. The number of scenes used for each product
over this period of analysis is summarized in Table I, where
multiple scenes were used within a day for some sites to cover
the entire water boundaries (see Fig. 1) to be classified.

Each of the products has at least one strength that the
fusion technique relies upon, namely, the difference in spectral
signatures of water and its surroundings in the optical wave-
lengths and the ability of radar to penetrate cloud and certain
vegetation coverage. The JavaScript API of GEE platform [9]
was used for the processing of these remote sensing products,
all of which are available in the GEE data catalog. GEE
provides access to satellite data sets on a planetary scale and
provides extensive computing power for image processing and
analysis without the need for high-end processing capability
locally. Details on the preprocessing and water extraction
algorithm applied to each product are presented in Section III.

C. Reference Data

For the accuracy assessment of the delineated water extent,
we used higher resolution imagery in the visible and NIR
bands. Planet (formally known as Planet Labs) [10], with a
constellation of more than 170 active CubeSats, has realized



TABLE I

NUMBER OF SCENES USED FOR EACH PRODUCT OVER 2016–2018.
MULTIPLE SCENES WERE USED PER DAY TO COVER THE STUDY AREA

Fig. 1. (a)–(c) Locations and digitized boundaries for the three surface water
bodies used in this study. (d) Surface water bodies (lakes and wetlands) over
Bangladesh shown in blue.

daily global imaging in the visible and NIR at 3-m resolu-
tion. Recent studies have demonstrated the capabilities and
usefulness of Planet data in easily extracting the water extent,
such as those by Cooley et al. [22], [23]. Thus, the Level 3A
PlanetScope Ortho Tile Product from Planet Labs with the
orthorectified pixel size of 3.125 m and daily revisit time at
nadir was acquired using the Planet Explorer imagery explo-
ration tool [17] to obtain the reference water map, as explained
later in Section III.

III. METHODOLOGY

An overview of the water area classification approach used
in this study is shown in Fig. 2. The methodology begins first
with processing the visible, NIR, and SAR reflectance data
over the selected sites using two different water extraction
algorithms as described in Sections III-A–III-C. The satellite
data were acquired for the dates closest to the date of interest
(DoI). The DoI is the user-defined day for which the water
extent needs to be obtained. The output water extents from
each satellite product were later fused together based on rules
specific to each image type to derive the fused water extent.
Accuracy assessment of fused water extent was then performed
using high-resolution images.

A. Landsat-8-Based Water Extraction

The DSWE offered by U.S. Geological Survey (USGS) [11]
for the L8 OLI product was incorporated here for water
extraction. The algorithm was coded in the GEE platform

using JavaScript API to produce the DSWE output over any
custom region of interest. The specifics of the algorithm
are briefly described next. For details on DSWE algorithm,
the reader is referred to [11].

The purpose of the DSWE algorithm is to account for veg-
etation over surface water bodies in the delineation procedure.
It involves multiple levels of processing using geophysical
information including a digital elevation model, slope, and hill-
shade, as well as quality flags encoding data on cloud, cloud
shadow, and snow within each L8 scene. These are calculated
based on the function of mask (FMask) algorithm [26]. The
model used to generate DSWE is composed of five decision-
rule-based diagnostic tests applied uniformly to all the pixels
without requiring scene-based training. Three of the diagnostic
tests are designed to detect if the pixel under consideration
is fully covered by water (open water tests), while the other
two tests detect inundation in the presence of vegetation or
other nonwater land covers at the subpixel scale (partial water
tests). Using the RGB, NIR, and shortwave IR bands 1 and
2 (SWIR1/2) from L8 surface reflectance product, the fol-
lowing indices are calculated: 1) modified normalized differ-
ence wetness index (MNDWI) = (green − SWIR1)/(green +
SWIR1); 2) multiband spectral relationship visible (MBSRV)
= green + red; 3) multiband spectral relationship near-infrared
(MBSRN) = NIR + SWIR1; 4) automated water extent
shadow (AWESH) = blue + (2.5 × green) − (1.5 × MBSRN)
− (0.25 × SWIR2); and 5) NDVI = (NIR − red)/(NIR + red).
The open and partial water diagnostic tests are then performed
for each pixel based on multiple thresholds applied to the
spectral bands and the five calculated indices to produce a
preliminary DSWE output. This study used default values for
each threshold as specified in [11].

The next step is to refine the DSWE output by filtering
out low-confidence water pixels using geophysical parameters
including topography, slope, and hillshade for each pixel.
Percent slope is used to remove the locations where the terrain
is too steep to hold water. Similarly, any location where the
terrain is too shaded is also filtered out. Next, the quality
assessment (QA) bands obtained from the L8 TOA reflectance
product are used to mask the cloud, cloud shadow, and snow,
resulting in the final delineated DSWE output. The output
band results into six possible values: 0 (not water), 1 (water—
high confidence), 2 (water—moderate confidence), 3 (potential
wetland/ partial surface water conservative), 4 (low-confidence
water/partial surface water aggressive), and 5 (masked out due
to cloud, cloud shadow, or snow) [11]. Different confidence
levels of inundation as well as the differentiation between
no water and cloud/snow masked pixels were used later as
one of the guiding factors in the fusion scheme described in
Section III-D.

B. Sentinel-1-Based Water Extraction

The SAR imaging sensors of S1 send radar signals from
the satellite toward the Earth at an off-nadir angle, and the
backscatter off the Earth’s surface is measured. The amount
of backscatter is determined in part by the roughness of the
surface, with smoother surfaces scattering less. Large flat
surfaces like water scatter very little at C-, X-, and L-band



wavelengths most commonly used in SAR imaging, and they
stand out as dark spots against relatively high-scattering land
surface. This property is used to extract the surface water
extent using a threshold on the backscatter value.

The S1 data were first preprocessed to filter the type
of signal received by the sensor. The S1 GRD images in
GEE catalog are detected, multilooked, processed to remove
thermal noise, radiometrically calibrated, orthorectified, and
geo-referenced SAR data. The co-polarized scenes with the
vertical (VV) transmitter–receiver polarization (vertical trans-
mitted and vertical received) were selected to ensure the
images have same transmit/receive polarizations. One of the
issues that exists with the radar product is the degradation of
its quality with the signal dependent granular noise, also called
“speckle.” The speckle is primarily caused by the phenomenon
of interference of the returning wave at the transducer aperture.
A focal median filter with 30 m × 30 m window was applied
to smoothen the image and, thus, reduce down the speckle
noise. The incidence angle of the SAR images also plays
an important role in the quality of the resulting classified
product. At lower look angles, the surface spatial resolution
in range decreases significantly (becomes coarser), while at
higher angles, the signal-to-noise ratio is quite small for low-
reflectivity targets such as wetlands [38]. Hence, the incidence
angles (θ ) were limited to the range 31.7◦ < θ < 45.4◦.
With the processed S1 image, a gray-level thresholding algo-
rithm was applied for delineation. Considering the dynamic
range of backscatter values for standing water of −24.3 to
−12.6 dB as found by Liu [31], a threshold value of −13 dB
was selected for classifying pixels less than the threshold as
water.

C. Sentinel-2-Based Water Extraction

The third satellite product used for inundation area estima-
tion is the multispectral S2 data set. The 10-m resolution (for
RGB and NIR reflectance bands) adds value in terms of spatial
granularity to the water extraction relative to the previously
chosen 30-m L8 multispectral data set. The DSWE algorithm
was also applied over the S2 bands to obtain the classified
water map. However, as the algorithm in its current state and
its thresholds are designed specifically for Landsat satellites,
modifications are needed to apply the same thresholds for
S2 due to differences in sensor characteristics and spectral
bands [32]. Because the algorithm is yet to be modified
by the official algorithm developer for a reliable application
with S2, an approach that transforms the surface reflectance
of S2 bands to that of L8 bands was incorporated so that the
same thresholds for L8 can be used. The surface reflectance
transformation functions for the approximately equivalent
spectral bands of L8 and S2 were given by Zhang et al. [32]
whose study region was located in southern Africa with
different land cover classes, representative of a wide range of
reflectance spectra and covering multiple seasons. The linear
mapping functions from S2 to L8 for the bands used by
the DSWE algorithm are tabulated in Table II. Furthermore,
the QA60 bitmask band (at 60-m resolution) provided in
S2 was used to obtain the cirrus and opaque cloud mask
information.

TABLE II

TRANSFORMATION FUNCTIONS BETWEEN APPROXIMATELY EQUIVALENT
BANDS OF L8 AND S2 FOR APPLYING L8-BASED DSWE

THRESHOLDS TO S2 (AFTER ZHANG et al. [32])

Fig. 2. Overview of the methodology for applying the fusion algorithm using
three different satellite image products—L8, S1, and S2.

D. Proposed Fusion Approach

After each satellite image was independently processed to
delineate the surface water extent, a fusion algorithm was
created to take the advantage of the complementary strengths
of the optical and radar data products. The fusion algorithm
was applied on a per-pixel-basis, i.e., each pixel was evaluated
for the optimal decision for water extraction. The algorithm
(see Fig. 2) is described in detail below.

First, all three water extracted data sets were brought to the
finest available resolution of 10 m to allow for a consistent
comparison using GEE’s inbuilt reduceRegion function, with
a scale argument set to 10 m across all data sets. Next,
the dates of acquisition for each of the individual data sets
were compared with the DoI for which the water extent was
required. As the optical and radar images often cannot be
acquired contemporaneously [8], any product falling outside
the 30-day period from DoI was discarded from the fusion
scheme. Although noteworthy changes to water extent can
occur within the 30-day period, the period was selected based
on the minimum gap for S1 of nearly 30 days between two
consecutive acquisitions over the three-year period of analysis.
A monthly timestep was also used by Slinski et al. [27] in
obtaining the time series of surface water extent. Composite
median of all the S1 images over the 30-day interval was
obtained by calculating the focal median value at each pixel.
Despite higher observational frequency, L8 and S2 exhibited
larger gaps in available imagery due to high cloud cover,
especially in monsoon seasons. This combination of imagery
generates the following four scenarios: 1) all three data sets are
available in the one-month interval; 2) only L8 and S1 avail-
able; 3) only S2 and S1 available; and 4) only S1 available.
These cases require different fusion rules to be applied for
the water extraction. The fourth scenario where only S1 is



TABLE III

FUSION ALGORITHM WITH DECISION RULES TO OBTAIN THE OPTIMAL WATER MASK FOR EACH PIXEL. THE THREE SCENARIOS ARE TABULATED IN
(A)–(C), WHILE THE FOURTH (WITH ONLY S1 AVAILABLE) ASSUMES THE SAME OUTPUT AS S1. W: WATER; NW: NO WATER PRESENT; LNW:

LOW CONFIDENCE OR NO WATER PRESENT (DSWE OUTPUT OF 0 OR 4); HLW: HIGH/MODERATE/LOW CONFIDENCE WATER (DSWE
OUTPUT OF 1–4); HW: HIGH CONFIDENCE WATER (DSWE OUTPUT OF 1); HMW: HIGH/MODERATE CONFIDENCE WATER (DSWE

OUTPUT OF 1–2); CLOUD: CLOUD COVERED PIXEL (DSWE OUTPUT OF 5); AND “–”: THE OUTPUT IS INDEPENDENT OF
THE PIXEL’S STATE FOR THAT PRODUCT. (A) SCENARIO 1: ALL SATELLITE PRODUCTS (S1, L8, AND S2) AVAILABLE.

(B) SCENARIO 2: ONLY S1 AND L8 AVAILABLE. (C) SCENARIO 3: ONLY S1 AND S2 AVAILABLE

available assumes the same output as the S1-based water
extent. The decision rules implemented in the fusion scheme
are summarized in Table III.

The rules presented in Table III were selected to compensate
for the limitations of each product with the complementary
strength of other products. For instance, the speckle noise in
SAR (that persists even after applying the focal median filter)
is reduced using the L8 and S2 results from the nearest day of
acquisition. Similarly, on days when L8 or S2 experiences high
cloud cover, the cloud-free S1 imagery was capitalized on in
the fusion scheme to produce the most optimal estimate of the
water mask over the selected water body. Different confidence
levels from DSWE output were used to infer the cases of high
confidence in classifying the output pixel state as water. For
instance, when the L8 and S2 classify a pixel as water with
either high or moderate confidence, there is a high confidence
in the output pixel being water, irrespective of S1, and hence
is classified as water [see decision rule 3 in Table III(a)].
Such a rule-based classification is computationally efficient
and requires little or no training data for calibration.

E. Assessment of the Proposed Fusion Technique

To assess the accuracy of delineated water area using the
individual satellite products and the fusion approach, 3-m res-
olution PlanetScope image was used to classify water extent.
Due to the absence of in situ data, the classified PlanetScope

map was used as reference [22], [33], [34]. It needs to be
mentioned here that the use of Planet imagery for assessment
has weaknesses of its own such as the product’s optical nature
which can lead to biases similar to other optical sensors
used here regarding vegetation and cloud cover. To minimize
some of these biases, care was taken while acquiring the
PlanetScope scenes to ensure they were completely cloud-free
and as closely matched in time as possible to the available
L8, S1, and S2 scenes over each water body. Images for
three different seasons (wet, dry, and intermediate) were
downloaded and processed separately for the comparison.
Supervised classification was performed on each of them using
the maximum likelihood classification. The accuracy of fusion-
based output was quantified in terms of the confusion matrix
and user’s/producer’s accuracy values for specific days in
different seasons. A time series of surface water extent was
also derived from the individual water extraction procedures
and the fusion approach to assess the temporal consistency.
In addition, spatial maps were visually compared to evaluate
spatial consistency.

IV. CASE STUDY RESULTS

A. Temporal Consistency: Time Series of Water Inundated
Area

The areas derived from the extraction algorithms of L8, S2,
S1, and the fusion technique over 2016–2018 are shown in
Fig. 3 for the three selected sites. The cyclical pattern of water



TABLE IV

ACCURACY ASSESSMENT FOR THE THREE SITES OVER DIFFERENT SEASONS

TABLE V

COMPARISON OF SURFACE WATER AREA DERIVED

FROM THE THREE TECHNIQUES

area due to monsoonal hydrology is clearly apparent at all the
three sites.

It is apparent from Fig. 3 that L8 and S2 suffered from
high-cloud cover issues especially during the wet seasons that
leads to lower area estimates. In addition, while S1 tends to
produce lower estimates of inundation extent, L8 and S2 result
in similar results during cloud-free days. The fused technique
is able to reproduce a temporally consistent estimate of water
areas, filling up the gaps left by the optical images during
high-cloud cover in monsoon-dominated months. Some of the
sudden changes in fusion-derived time series persist due to
the unavailability of one or both the optical data sets (due to
high-cloud cover).

B. Spatial Consistency: Maps of Delineated Water Extent

The spatial consistency of the resulting inundation extent is
first assessed by visually comparing the classified water maps
produced by different sensors against that obtained from the
reference PlanetScope imagery. The delineated water maps are
shown for different seasons (wet, dry, and intermediate) for all
the three sites in Fig. 4, along with the respective surface water
area. It can be observed that the fusion-based water extent
is spatially consistent with the PlanetScope’s reference map.
Also, the area values from PlanetScope and fusion-derived
water mask are closest, as compared to those from individual
products.

C. Accuracy Assessment

Accuracy was assessed for each remote sensing data type
and technique against the reference data set. For estimation
of the classification accuracy, 2000 points were selected using
stratified random strategy. The points were randomly distrib-
uted within the two classes of water and no water, where
each class has a number of points proportional to its relative
area. Among four different sampling techniques, the stratified
random sampling method resulted in the highest classification
accuracy in a study by Ramezan et al. [24], and it was also



Fig. 3. Time series of extract water surface areas over 2016–2018 from L8,
S1, S2, and fusion approach are compared for three selected sites. (a) Korchar
Haor. (b) Dekhar Haor. (c) Ashulia.

used by Slinski et al. [27]. The confusion matrix and detailed
accuracy assessment with user and producer accuracies are
shown in Table IV for each of the three sites. The accuracy is
reported for both the water and nonwater class detection. The
overall accuracy and Kappa coefficient that accounts for the
possibility of agreement occurring by chance are also obtained.

The highest overall accuracies were obtained during the
dry seasons for all the three sites, with the overall accuracy
between 85.8% and 98.7% and Kappa coefficients ranging
from 0.61 to 0.83. During the wet season, the fusion approach
resulted in improvements in overall accuracy of up to 3.8%,
18.2%, and 8.3% over using the individual products of L8,
S1, and S2, respectively, across the three sites, while not
considering the cloud-affected L8/S2 images. For the con-
sidered dry/intermediate seasons, the improvements reaching
up to 1%, 28.2%, and 4% were obtained over L8, S1, and
S2, respectively. The underestimation of water area using
S1 is apparent, with lower producer and user accuracies for

the water and nonwater classes, respectively. The effect of
S1 speckle can be seen for Korchar Haor during the dry season
(March 2018) with very low user accuracy of the water and
nonwater classes (pixel on classified map not corresponding
to the same on ground). The highest accuracies were obtained
during the dry seasons with the three products performing
similar to the fusion output, except S1, which suffers from high
speckle for Korchar Haor in the March 2018 water-classified
map.

D. Comparison of the Fusion Approach With a Comparable
Method

Comparison of results obtained from the fusion approach
was made against a recently published and comparable algo-
rithm recent literature. This method is called active–passive
surface water classification (APWC) [27] and was imple-
mented over the three Haors in GEE to obtain the water extent
for comparison with the fusion-derived estimates. The APWC
method was chosen specifically because it uses the combi-
nation of active (Sentinel-1 SAR) and passive (Landsat 7/8)
sensors and is one of the first studies to generate accurate
monthly water body maps at 10-m resolution, in this case in
Ethiopia. However, the assessment of the technique for more
humid, monsoonal environments such as those found in South
Asia has not yet been performed. The APWC method uses
K -means cluster analysis to obtain the water mask which can
be implemented on the GEE platform.

This makes comparison more convenient with the fusion
approach in this study coded in the same GEE environment.
For performing the K -means cluster analysis, five clusters
were used (K = 5) and the cluster corresponding to water
was selected based on the PlanetScope-derived water map. The
results for classified water extent from APWC for each site are
shown in Fig. 5, while Table V shows the comparison of the
respective areas with those derived from fusion approach and
PlanetScope’s reference imagery.

As our comparison suggests, for small water bodies in
Bangladesh for which APWC has not yet been tested,
the method tends to underestimate the inundation extent while
detecting more classes within the water mask. Furthermore,
decreasing the number of clusters from five (not shown here)
resulted in a greater number of false positives. This result
suggests that our proposed fusion algorithm based on decision
rules and synergistic use of active and passive remote sensing
data is appropriately tailored for water body delineation in
South Asian environments.

V. DISCUSSION AND CONCLUSION

This article proposes a fusion technique for water area
classification tailored for the humid climate of South Asia,
where persistent cloud cover, vegetation, and mountainous
topography present challenges. The technique takes advantage
of complementary strengths of different remote sensing data
and produces the most optimal water mask possible with the
available data and higher observational frequency. Remote
sensing images from L8, S1, and S2 were processed inde-
pendently to extract surface water extent over three different



Fig. 4. Water inundation maps derived from the individual satellite products and the fusion approach for the three sites during representative months of
wet, dry, and intermediate seasons, compared with the PlanetScope reference water inundation. The water areas and the corresponding dates of acquisition in
brackets are specified below each map.



Fig. 5. APWC-derived water mask (black) using K -means clustering for the three Haors. Other colors denote the remaining four classes resulting from the
APWC K -means cluster analysis (K = 5). (a) Korchar (October 2018). (b) Dekhar (October 2016). (c) Ashulia (September 2018).

surface water bodies (lakes) with different areas and seasonal
dynamics. The GEE platform used here also allows for appli-
cation and assessment of the technique over any other region
of interest.

The fusion approach yielded temporally consistent time
series over the three-year period of analysis. The output was
able to fill the major gaps in L8 and S2 time series due
to high cloud cover, especially during the monsoon seasons.
Moreover, the fusion approach is able to address the limitation
of underestimation in the radar-based S1 sensor. The speckle
noise was also reduced using the spatially consistent results
from L8 and S2 images. The disagreement and misclassifica-
tion from the individual remote sensing techniques highlight
the weaknesses of each technique and the advantage of using
a fusion approach over small lakes in a tropical monsoon
climate.

The fusion technique applied over the South Asian waters
was compared with outputs from the already published APWC
algorithm [27]. The latter, based on the K -means clustering,
resulted in a greater number of missed water pixels and
underestimation in surface water extent. The relatively better
estimate from the proposed fusion approach is indicative of its
ability to perform in challenging environments with shallower,
smaller, and vegetation-dominated water bodies. While the
clustering-based APWC successfully generates accurate water
body maps in drier climate of Ethiopia in [27], it may need
modification to be suitable for South Asian water bodies. To be
fair to APWC, the proposed fusion technique benefits from the
well-established DSWE algorithm for L8 and S2, while APWC
does not. It should also be noted that the fusion approach
is limited by the time difference in the acquisition dates
between optical and radar images. The worst-case scenario
with the difference of one month might cause discrepancies
in the derived area, especially during the wetter seasons with
high-cloud cover for optical images.

Overall, the proposed fusion scheme is able to produce
spatially and temporally robust and more frequent estimate
of water area when compared with those obtained from
individual sensors. It is important that such a technique, using
freely available remote sensing products, be used to improve
automated space-based monitoring of water bodies and, hence,
inform policy for better management of the Earth’s freshwater
resources. Future extension of this work should consider the
use of polarimetric SAR data as an alternative approach to the
SAR data used here [39].

In combination with water surface elevations obtained from
in situ gauges, some of which we have installed in the Haors
described here as part of a citizen science project, it may be
possible to use the satellite-based measurements of inundation
extent described here to estimate changes in water volume over
time. This measurement, which is critical for understanding
regional water balance variations, is also a focal point of
the upcoming Surface Water and Ocean Topography (SWOT)
satellite mission, scheduled for launch in 2021 [25]. Fusion
of SWOT with other sensors, using methods stemming from
this study, may result in improved understanding of water
resources in monsoonal environments like South Asia.
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