5,878 research outputs found

    Evaluation of the volumetric erosion of spherical electrical contacts using the defect removal method

    No full text
    Volumetric erosion is regarded as a significant index for studying the erosion process of electrical switching contacts. Three-dimensional (3-D) surface measurement techniques provide an approach to investigate the geometric characteristics and volumetric erosion of electrical contacts. This paper presents a concrete data-processing procedure for evaluating volumetric erosion of spherical electrical contacts from 3-D surface measurement data using the defect removal method (DRM). The DRM outlined by McBride is an algorithm for evaluating the underlying form (prior to erosion) parameters of the surfaces with localized erosion and allowing the erosion characteristics themselves to be isolated. In this paper, a number of spherical electrical contacts that had undergone various electrical operations were measured using a 3-D surface profiler, the underlying form parameters of the eroded contacts were evaluated using the DRM, and then the volumetric erosions were isolated and calculated. The analysis of the correlations between the volumetric erosion and the number of switching cycles of electrical operation that the contacts had undergone showed a more accurate and reliable volumetric erosion evaluation using the DRM than that without using the DRM

    Bound-State Variational Wave Equation For Fermion Systems In QED

    Full text link
    We present a formulation of the Hamiltonian variational method for QED which enables the derivation of relativistic few-fermion wave equation that can account, at least in principle, for interactions to any order of the coupling constant. We derive a relativistic two-fermion wave equation using this approach. The interaction kernel of the equation is shown to be the generalized invariant M-matrix including all orders of Feynman diagrams. The result is obtained rigorously from the underlying QFT for arbitrary mass ratio of the two fermions. Our approach is based on three key points: a reformulation of QED, the variational method, and adiabatic hypothesis. As an application we calculate the one-loop contribution of radiative corrections to the two-fermion binding energy for singlet states with arbitrary principal quantum number nn, and l=J=0l =J=0. Our calculations are carried out in the explicitly covariant Feynman gauge.Comment: 26 page

    A theoretical model for the formation of Ring Moat Dome Structures:Products of second boiling in lunar basaltic lava flows

    Get PDF
    Newly documented Ring Moat Dome Structures (RMDSs), low mounds typically several hundred meters across with a median height of ~3.5 m and surrounded by moats, occur in the lunar maria. They appear to have formed synchronously with the surrounding mare basalt deposits. It has been hypothesized that they formed on the surfaces of lava flows by the extrusion of magmatic foams generated in the flow interiors as the last stage of the eruption and flow emplacement process. We develop a theoretical model for the emplacement and cooling of mare basalts in which the molten cores of cooling flows are inflated during the late stages of eruptions by injection of additional hot lava containing dissolved volatiles. Crystallization of this lava causes second boiling (an increase in vapor pressure to the point of supersaturation due to crystallization of the melt), generating copious quantities of vesicles (magmatic foam layers) at the top and bottom of the central core of the flow. Flow inflation of many meters is predicted to accompany the formation of the foam layers, flexing the cooled upper crustal layer, and forming fractures that permit extrusions of the magmatic foams onto the surface to form domes, with subsidence of the subjacent and surrounding surface forming the moats. By modeling the evolution of the internal flow structure we predict the properties of RMDSs and the conditions in which they are most likely to form. We outline several tests of this hypothesis

    Issues and Observations on Applications of the Constrained-Path Monte Carlo Method to Many-Fermion Systems

    Full text link
    We report several important observations that underscore the distinctions between the constrained-path Monte Carlo method and the continuum and lattice versions of the fixed-node method. The main distinctions stem from the differences in the state space in which the random walk occurs and in the manner in which the random walkers are constrained. One consequence is that in the constrained-path method the so-called mixed estimator for the energy is not an upper bound to the exact energy, as previously claimed. Several ways of producing an energy upper bound are given, and relevant methodological aspects are illustrated with simple examples.Comment: 28 pages, REVTEX, 5 ps figure

    Functional Integral Approach to the Single Impurity Anderson Model

    Full text link
    Recently, a functional integral representation was proposed by Weller (Weller, W.: phys.~stat.~sol.~(b) {\bf 162}, 251 (1990)), in which the fermionic fields strictly satisfy the constraint of no double occupancy at each lattice site. This is achieved by introducing spin dependent Bose fields. The functional integral method is applied to the single impurity Anderson model both in the Kondo and mixed-valence regime. The f-electron Green's function and susceptibility are calculated using an Ising-like representation for the Bose fields. We discuss the difficulty to extract a spectral function from the knowledge of the imaginary time Green's function. The results are compared with NCA calculations.Comment: 11 pages, LaTeX, figures upon request, preprint No. 93/10/

    Numerical modelling for the interpretation of a laboratory mock-up experiment of bentonite/granite interface

    Get PDF
    AbstractPerformance assessment of a deep geological repository requires understanding diffusion and determining diffusion parameters under real conditions because diffusion is a key transport mechanism in hosting geological formation. FEBEX (Full-scale Engineered Barrier Experiment) is a demonstration and research project dealing with the bentonite engineered barrier designed for sealing and containment of the high-level radioactive waste repository. To support field investigations of FEBEX in situ test, a large–scale laboratory mock-up experiment (MUE) is being performed at CIEMAT facilities to study tracer migration at the bentonite/granite interface. Numerical models of MUE are presented here for HTO, 36Cl- and 137Cs+. Experiments are modeled with 2-D axi-symmetric finite element grids and are solved with CORE2D V4. Model results indicate that numerical solutions with reference parameters reproduce measured data for HTO and 36Cl- but show large discrepancies for 137Cs+. Relevant diffusion and retention parameters are identified by sensitivity analysis for tracer concentrations in borehole, bentonite and granite, respectively. Interpretation of 137Cs+ data measured in the tracer chamber is perfomed by taking into account the uncertainties in initial activity C0 and initial time t0. Optimum values of C0 and t0 are obtained. The best fit is obtained with De-filter equal to 2.03.10-10 m2/s and Kd-bentonite equal to 5m3.Kg-1

    The monoid of queue actions

    Full text link
    We investigate the monoid of transformations that are induced by sequences of writing to and reading from a queue storage. We describe this monoid by means of a confluent and terminating semi-Thue system and study some of its basic algebraic properties, e.g., conjugacy. Moreover, we show that while several properties concerning its rational subsets are undecidable, their uniform membership problem is NL-complete. Furthermore, we present an algebraic characterization of this monoid's recognizable subsets. Finally, we prove that it is not Thurston-automatic

    Multi-locus phylogeny of Pleosporales: a taxonomic, ecological and evolutionary re-evaluation

    Get PDF
    Five loci, nucSSU, nucLSU rDNA, TEF1, RPB1 and RPB2, are used for analysing 129 pleosporalean taxa representing 59 genera and 15 families in the current classification of Pleosporales. The suborder Pleosporineae is emended to include four families, viz. Didymellaceae, Leptosphaeriaceae, Phaeosphaeriaceae and Pleosporaceae. In addition, two new families are introduced, i.e. Amniculicolaceae and Lentitheciaceae. Pleomassariaceae is treated as a synonym of Melanommataceae, and new circumscriptions of Lophiostomataceae s. str, Massarinaceae and Lophiotrema are proposed. Familial positions of Entodesmium and Setomelanomma in Phaeosphaeriaceae, Neophaeosphaeria in Leptosphaeriaceae, Leptosphaerulina, Macroventuria and Platychora in Didymellaceae, Pleomassaria in Melanommataceae and Bimuria, Didymocrea, Karstenula and Paraphaeosphaeria in Montagnulaceae are clarified. Both ecological and morphological characters show varying degrees of phylogenetic significance. Pleosporales is most likely derived from a saprobic ancestor with fissitunicate asci containing conspicuous ocular chambers and apical rings. Nutritional shifts in Pleosporales likely occured from saprotrophic to hemibiotrophic or biotrophic

    Nanoscale Investigation of Defects and Oxidation of HfSe<sub>2</sub>

    Get PDF
    HfSe2 is a very good candidate for a transition metal dichalcogenide-based field-effect transistor owing to its moderate band gap of about 1 eV and its high-κ dielectric native oxide. Unfortunately, the experimentally determined charge carrier mobility is about 3 orders of magnitude lower than the theoretically predicted value. This strong deviation calls for a detailed investigation of the physical and electronic properties of HfSe2. Here, we have studied the structure, density, and density of states of several types of defects that are abundant on the HfSe2 surface using scanning tunneling microscopy and spectroscopy. Compared to MoS2 and WSe2, HfSe2 exhibits similar type of defects, albeit with a substantially higher density of 9 × 1011 cm-2. The most abundant defect is a subsurface defect, which shows up as a dim feature in scanning tunneling microscopy images. These dim dark defects have a substantially larger band gap (1.25 eV) than the pristine surface (1 eV), suggesting a substitution of the Hf atom by another atom. The high density of defects on the HfSe2 surface leads to very low Schottky barrier heights. Conductive atomic force microscopy measurements reveal a very small dependence of the Schottky barrier height on the work function of the metals, suggesting a strong Fermi-level pinning. We attribute the observed Fermi-level pinning (pinning factor ∼0.1) to surface distortions and Se/Hf defects. In addition, we have also studied the HfSe2 surface after the exposure to air by scanning tunneling microscopy and conductive atomic force microscopy. Partly oxidized layers with band gaps of 2 eV and Schottky barrier heights of ∼0.6 eV were readily found on the surface. Our experiments reveal that HfSe2 is very air-sensitive, implying that capping or encapsulating of HfSe2, in order to protect it against oxidation, is a necessity for technological applications

    The Analysis of SKP1 Gene Expression in Physiological Male Sterility Induced by Chemical Hybridizing Agent SQ-1 in Wheat (Triticum aestivum L.)

    Get PDF
    Physiological male sterility induced by the chemical hybridizing agent (CHA) overcomes problems of maintenance of sterile lines and restorers. However, the mechanism of sterility is unclear. The process of tapetum of CHA-treated ‘Xi’nong 2611’ at uninucleate, binucleate and trinucleate were compared with control to determine if tapetum varying differently during developmental stages. Tapetal degradation in CHA-treated ‘Xi’nong 2611’ began at late uninucleate stage, somewhat earlier than control plants. Cytological observations indicated that the gradual degradation of the tapetum in CHA-treated ‘Xi’nong 2611’ was initiated and terminated earlier than in the control. These findings implied that CHA-induced male sterility was related to abnormally early tapetal degradation. In order to indicate the role of the SKP1 gene in fertility/sterility in wheat, its expression was assessed in anthers at uninucleate, binucleate and trinucleate stages. SKP1 expression was reduced in the later developmental stages, and there was an obvious decrease from the uninucleate to trinucleate stages. Higher expression of the SKP1 gene occurred in ‘Xi’nong 2611’ compared to CHA-treated ‘Xi’nong 2611’. This implied that SKP1 gene expression was inhibited during the fertility transformation process and was related to transformation from fertility to sterility. Moreover, the results from this study suggest that SKP1 plays an essential role of conducting fertility in physiological male sterility
    corecore