5,063 research outputs found

    Underlying Pairing States in Cuprate Superconductors

    Full text link
    In this Letter, we develop a microscopic theory to describe the close proximity between the insulating antiferromagnetic (AF) order and the d-wave superconducting (dSC) order in cuprates. We show that the cuprate ground states form a configuration of coherent pairing states consisting of extended singlet Cooper pairs and triplet π\pi pairs, which can simultaneously describe AF and dSC orders.Comment: 4 papes, 1 figur

    New mechanism to cross the phantom divide

    Full text link
    Recently, type Ia supernovae data appear to support a dark energy whose equation of state ww crosses -1, which is a much more amazing problem than the acceleration of the universe. We show that it is possible for the equation of state to cross the phantom divide by a scalar field in the gravity with an additional inverse power-law term of Ricci scalar in the Lagrangian. The necessary and sufficient condition for a universe in which the dark energy can cross the phantom divide is obtained. Some analytical solutions with w<−1w<-1 or w>−1w>-1 are obtained. A minimal coupled scalar with different potentials, including quadratic, cubic, quantic, exponential and logarithmic potentials are investigated via numerical methods, respectively. All these potentials lead to the crossing behavior. We show that it is a robust result which is hardly dependent on the concrete form of the potential of the scalar.Comment: 11 pages, 5 figs, v3: several references added, to match the published versio

    Effects of electrojet turbulence on a magnetosphere-ionosphere simulation of a geomagnetic storm

    Full text link
    Ionospheric conductance plays an important role in regulating the response of the magnetosphere‐ionosphere system to solar wind driving. Typically, models of magnetosphere‐ionosphere coupling include changes to ionospheric conductance driven by extreme ultraviolet ionization and electron precipitation. This paper shows that effects driven by the Farley‐Buneman instability can also create significant enhancements in the ionospheric conductance, with substantial impacts on geospace. We have implemented a method of including electrojet turbulence (ET) effects into the ionospheric conductance model utilized within geospace simulations. Our particular implementation is tested with simulations of the Lyon‐Fedder‐Mobarry global magnetosphere model coupled with the Rice Convection Model of the inner magnetosphere. We examine the impact of including ET‐modified conductances in a case study of the geomagnetic storm of 17 March 2013. Simulations with ET show a 13% reduction in the cross polar cap potential at the beginning of the storm and up to 20% increases in the Pedersen and Hall conductance. These simulation results show better agreement with Defense Meteorological Satellite Program observations, including capturing features of subauroral polarization streams. The field‐aligned current (FAC) patterns show little differences during the peak of storm and agree well with Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) reconstructions. Typically, the simulated FAC densities are stronger and at slightly higher latitudes than shown by AMPERE. The inner magnetospheric pressures derived from Tsyganenko‐Sitnov empirical magnetic field model show that the inclusion of the ET effects increases the peak pressure and brings the results into better agreement with the empirical model.This material is based upon work supported by NASA grants NNX14AI13G, NNX13AF92G, and NNX16AB80G. The National Center for Atmospheric Research is sponsored by the National Science Foundation. This work used the XSEDE and TACC computational facilities, supported by National Science Foundation grant ACI-1053575. We would like to acknowledge high-performance computing support from Yellowstone (ark:/85065/d7wd3xhc) provided by NCAR's Computational and Information Systems Laboratory, sponsored by the National Science Foundation. We thank the AMPERE team and the AMPERE Science Center for providing the Iridium derived data products. All model output, simulation codes, and analysis routines are being preserved on the NCAR High-Performance Storage System and will be made available upon written request to the lead author of this publication. (NNX14AI13G - NASA; NNX13AF92G - NASA; NNX16AB80G - NASA; National Science Foundation; ACI-1053575 - National Science Foundation

    Elementary function generators for neural-network emulators

    Full text link

    Superconductivity and non-metallicity induced by doping the topological insulators Bi2Se3 and Bi2Te3

    Full text link
    We show that by Ca-doping the Bi2Se3 topological insulator, the Fermi level can be fine tuned to fall inside the band gap and therefore suppress the bulk conductivity. Non-metallic Bi2Se3 crystals are obtained. On the other hand, the Bi2Se3 topological insulator can also be induced to become a bulk superconductor, with Tc ~ 3.8 K, by copper intercalation in the van der Waals gaps between the Bi2Se3 layers. Likewise, an as-grown crystal of metallic Bi2Te3 can be turned into a non-metallic crystal by slight variation of the Te content. The Bi2Te3 topological insulator shows small amounts of superconductivity with Tc ~ 5.5 K when reacted with Pd to form materials of the type PdxBi2Te3

    Failure regime in (1+1) dimensions in fibrous materials

    Full text link
    In this paper, we introduce a model for fracture in fibrous materials that takes into account the rupture height of the fibers, in contrast with previous models. Thus, we obtain the profile of the fracture and calculate its roughness, defined as the variance around the mean height. We investigate the relationship between the fracture roughness and the fracture toughness.Comment: 4 pages, 4 figures.eps, Revte

    Probing Pulsar Winds Using Inverse Compton Scattering

    Get PDF
    We investigate the effects of inverse Compton scattering by electrons and positrons in the unshocked winds of rotationally-powered binary pulsars. This process can scatter low energy target photons to produce gamma rays with energies from MeV to TeV. The binary radio pulsars PSR B1259-63 and PSR J0045-73 are both in close eccentric orbits around bright main sequence stars which provide a huge density of low energy target photons. The inverse Compton scattering process transfers momentum from the pulsar wind to the scattered photons, and therefore provides a drag which tends to decelerate the pulsar wind. We present detailed calculations of the dynamics of a pulsar wind which is undergoing inverse Compton scattering, showing that the deceleration of the wind of PSR B1259-63 due to `inverse Compton drag' is small, but that this process may confine the wind of PSR J0045-73 before it attains pressure balance with the outflow of its companion star. We calculate the spectra and light curves of the resulting inverse Compton emission from PSR B1259-63 and show that if the size of the pulsar wind nebula is comparable to the binary separation, then the gamma-ray emission from the unshocked wind may be detectable by atmospheric Cerenkov detectors or by the new generation of satellite-borne gamma-ray detectors such as INTEGRAL and GLAST. This mechanism may therefore provide a direct probe of the freely-expanding regions of pulsar winds, previously thought to be invisible.Comment: To be published in Astroparticle Physics. 27 pages, 5 figure

    Faithful remote state preparation using finite classical bits and a non-maximally entangled state

    Full text link
    We present many ensembles of states that can be remotely prepared by using minimum classical bits from Alice to Bob and their previously shared entangled state and prove that we have found all the ensembles in two-dimensional case. Furthermore we show that any pure quantum state can be remotely and faithfully prepared by using finite classical bits from Alice to Bob and their previously shared nonmaximally entangled state though no faithful quantum teleportation protocols can be achieved by using a nonmaximally entangled state.Comment: 6 page

    Thermal stability of sputter-deposited 330 austenitic stainless-steel thin films with nanoscale growth twins

    Get PDF
    We have explored the thermal stability of nanoscale growth twins in sputter-deposited 330 stainless-steel (SS) films by vacuum annealing up to 500 °C. In spite of an average twin spacing of only 4 nm in the as-deposited films, no detectable variation in the twin spacing or orientation of twin interfaces was observed after annealing. An increase in the average columnar grain size was observed after annealing. The hardness of 330 SS films increases after annealing, from 7 GPa for as-deposited films to around 8 GPa for annealed films, while the electrical resistivity decreases slightly after annealing. The changes in mechanical and electrical properties after annealing are interpreted in terms of the corresponding changes in the residual stress and microstructure of the films

    Laser-noise-induced correlations and anti-correlations in Electromagnetically Induced Transparency

    Full text link
    High degrees of intensity correlation between two independent lasers were observed after propagation through a rubidium vapor cell in which they generate Electromagnetically Induced Transparency (EIT). As the optical field intensities are increased, the correlation changes sign (becoming anti-correlation). The experiment was performed in a room temperature rubidium cell, using two diode lasers tuned to the 85^{85}Rb D2D_2 line (λ=780\lambda = 780nm). The cross-correlation spectral function for the pump and probe fields is numerically obtained by modeling the temporal dynamics of both field phases as diffusing processes. We explored the dependence of the atomic response on the atom-field Rabi frequencies, optical detuning and Doppler width. The results show that resonant phase-noise to amplitude-noise conversion is at the origin of the observed signal and the change in sign for the correlation coefficient can be explained as a consequence of the competition between EIT and Raman resonance processes.Comment: Accepted for publication in EPJ
    • 

    corecore