263 research outputs found

    Supply Chain Management of Fresh Produce: Melons in Western China

    Get PDF
    The western part of China has a long history and reputation of growing a variety of quality melons largely due to its semi arid agronomic environment. In the past decade, the industry suffered from the interrelated issues of unreliable quality and intense price competition. Even though both the government and supply chain stakeholders are aware of the problems, there is a need to look at the issues from a supply chain perspective and new ways of managing the melon supply chains are to be explored. This paper analysed the melon supply chain in western China in the areas of logistical efficiency and supply chain relationship management. The results of the analysis offer insights for improving the efficiency of the melon supply chain and the competitiveness the industry. The results also shed lights for other supply chains of fresh produce in developing countries in general.melon, China, supply chain, value chain, Crop Production/Industries, Industrial Organization, O13, O5, Q13,

    Purification and Characterization of a CkTLP Protein from Cynanchum komarovii Seeds that Confers Antifungal Activity

    Get PDF
    BACKGROUND: Cynanchum komarovii Al Iljinski is a desert plant that has been used as analgesic, anthelminthic and antidiarrheal, but also as a herbal medicine to treat cholecystitis in people. We have found that the protein extractions from C. komarovii seeds have strong antifungal activity. There is strong interest to develop protein medication and antifungal pesticides from C. komarovii for pharmacological or other uses. METHODOLOGY/PRINCIPAL FINDINGS: An antifungal protein with sequence homology to thaumatin-like proteins (TLPs) was isolated from C. komarovii seeds and named CkTLP. The three-dimensional structure prediction of CkTLP indicated the protein has an acid cleft and a hydrophobic patch. The protein showed antifungal activity against fungal growth of Verticillium dahliae, Fusarium oxysporum, Rhizoctonia solani, Botrytis cinerea and Valsa mali. The full-length cDNA was cloned by RT-PCR and RACE-PCR according to the partial protein sequences obtained by nanoESI-MS/MS. The real-time PCR showed the transcription level of CkTLP had a significant increase under the stress of abscisic acid (ABA), salicylic acid (SA), methyl jasmonate (MeJA), NaCl and drought, which indicates that CkTLP may play an important role in response to abiotic stresses. Histochemical staining showed GUS activity in almost the whole plant, especially in cotyledons, trichomes and vascular tissues of primary root and inflorescences. The CkTLP protein was located in the extracellular space/cell wall by CkTLP::GFP fusion protein in transgenic Arabidopsis. Furthermore, over-expression of CkTLP significantly enhanced the resistance of Arabidopsis against V. dahliae. CONCLUSIONS/SIGNIFICANCE: The results suggest that the CkTLP is a good candidate protein or gene for contributing to the development of disease-resistant crops

    The Chinese Dream and Strategy of College Students’ Growth and Success

    Get PDF
    The Chinese dream is a dream of the people in the final analysis. College students are the builders and successors of the cause of socialist modernization, and are the main force and reserve army to achieve the Chinese dream. Today, college students undertake the future mission to fully build a moderately prosperous society and achieve socialist modernization. In order to complete the mission and boost realization of the Chinese dream, college students should have ideological, political and moral qualities, professional knowledge, professional competencies, physical and mental qualities. At the same time, we should realize college students’ dream of success from three dimensions as follows, universities should attach importance to talents, teachers should strive to be “four haves’ teachers to foster talents, students should cherish ambitious dream to seek success.  

    Mining disease genes using integrated protein–protein interaction and gene–gene co-regulation information

    Get PDF
    AbstractIn humans, despite the rapid increase in disease-associated gene discovery, a large proportion of disease-associated genes are still unknown. Many network-based approaches have been used to prioritize disease genes. Many networks, such as the protein–protein interaction (PPI), KEGG, and gene co-expression networks, have been used. Expression quantitative trait loci (eQTLs) have been successfully applied for the determination of genes associated with several diseases. In this study, we constructed an eQTL-based gene–gene co-regulation network (GGCRN) and used it to mine for disease genes. We adopted the random walk with restart (RWR) algorithm to mine for genes associated with Alzheimer disease. Compared to the Human Protein Reference Database (HPRD) PPI network alone, the integrated HPRD PPI and GGCRN networks provided faster convergence and revealed new disease-related genes. Therefore, using the RWR algorithm for integrated PPI and GGCRN is an effective method for disease-associated gene mining

    Comparing sputum microbiota characteristics between severe and critically ill influenza patients

    Get PDF
    BackgroundCurrently, limited attention has been directed toward utilizing clinical cohorts as a starting point to elucidate alterations in the lower respiratory tract (LRT) microbiota following influenza A virus (IAV) infection.ObjectivesOur objective was to undertake a comparative analysis of the diversity and composition of sputum microbiota in individuals afflicted by severe and critically ill influenza patients.MethodsSputum specimens were procured from patients diagnosed with IAV infection for the purpose of profiling the microbiota using 16S-rDNA sequencing. To ascertain taxonomic differences between the severe and critically ill influenza cohorts, we leveraged Linear Discriminant Analysis Effect Size (LEfSe). Additionally, Spearman correlation analysis was employed to illuminate associations between sputum microbiota and influenza Ct values alongside laboratory indicators.ResultsOur study encompassed a total cohort of 64 patients, comprising 48 within the severe group and 16 within the critically ill group. Intriguingly, Bacteroidetes exhibited significant depletion in the critically ill cohort (p=0.031). The sputum microbiomes of the severe influenza group were hallmarked by an overrepresentation of Neisseria, Porphyromonas, Actinobacillus, Alloprevotella, TM7x, and Clostridia_UCG-014, yielding ROC-plot AUC values of 0.71, 0.68, 0.60, 0.70, 0.70, and 0.68, respectively. Notably, Alloprevotella exhibited an inverse correlation with influenza Ct values. Moreover, C-reactive protein (CRP) manifested a positive correlation with Haemophilus and Porphyromonas.ConclusionThe outcomes of this investigation lay the groundwork for future studies delving into the connection between the LRT microbiome and respiratory disorders. Further exploration is warranted to elucidate the intricate mechanisms underlying the interaction between IAV and Alloprevotella, particularly in disease progression

    Case report: Supratherapeutic tacrolimus concentrations with nirmatrelvir/ritonavir in a lung transplant patient: a case report using Rifampin for reversal

    Get PDF
    Paxlovid (nirmatrelvir/ritonavir) is an antiviral drug used to treat COVID-19, nirmatrelvir, a SARS-CoV-2 main protease inhibitor, works by inhibiting viral replication in the early stages, and ritonavir is a strong cytochrome P450 (CYP) 3A inhibitor that helps the nirmatrelvir reach and maintain the therapeutic concentrations. Paxlovid has a potential risk of drug interaction by elevating the plasma concentration of other drugs metabolized by CYP3A, like tacrolimus. This report examines the case of a 57-year-old female lung transplant patient self-administered Paxlovid for 5 days without discontinuing tacrolimus. She presented to the hospital with symptoms of headache, dizziness, palpitations, abdominal distension, nausea, vomiting, and diarrhea. The patient presented with tacrolimus toxicity and the blood concentration of tacrolimus was measured at 106 ng/mL. Urgent medical intervention was initiated, and Rifampin was administered to induce enzyme activity and rapidly decrease the concentration of tacrolimus. By adjusting the tacrolimus dosage, the final concentration was brought within the appropriate range. Clinical pharmacists should prioritize medication education for transplant patients to prevent severe drug interactions and minimize the impact on the patient’s overall well-being

    Symmetry-breaking-induced internal mixing enhancement of droplet collision

    Get PDF
    Binary droplet collision is a basic fluid phenomenon for many spray processes in nature and industry involving lots of discrete droplets. It exists an inherent mirror symmetry between two colliding droplets. For specific cases of the collision between two identical droplets, the head-on collision and the off-center collision, respectively, show the axisymmetric and rotational symmetry characteristics, which is useful for the simplification of droplet collision modeling. However, for more general cases of the collision between two droplets involving the disparities of size ratio, surface tension, viscosity, and self-spin motions, the axisymmetric and rotational symmetry droplet deformation and inner flow tend to be broken, leading to many distinct phenomena that cannot occur for the collision between two identical droplets owing to the mirror symmetry. This review focused on interpreting the asymmetric droplet deformation and the collision-induced internal mixing that was affected by those symmetry breaking factors, such as size ratio effects, Marangoni Effects, non-Newtonian effects, and droplet self-spin motion. It helps to understand the droplet internal mixing for hypergolic propellants in the rocket engineering and microscale droplet reactors in the biological engineering, and the modeling of droplet collision in real combustion spray processes

    Impacts of Surface Depletion on the Plasmonic Properties of Doped Semiconductor Nanocrystals

    Full text link
    Degenerately doped semiconductor nanocrystals (NCs) exhibit a localized surface plasmon resonance (LSPR) in the infrared range of the electromagnetic spectrum. Unlike metals, semiconductor NCs offer tunable LSPR characteristics enabled by doping, or via electrochemical or photochemical charging. Tuning plasmonic properties through carrier density modulation suggests potential applications in smart optoelectronics, catalysis, and sensing. Here, we elucidate fundamental aspects of LSPR modulation through dynamic carrier density tuning in Sn-doped Indium Oxide NCs. Monodisperse Sn-doped Indium Oxide NCs with various doping level and sizes were synthesized and assembled in uniform films. NC films were then charged in an in situ electrochemical cell and the LSPR modulation spectra were monitored. Based on spectral shifts and intensity modulation of the LSPR, combined with optical modeling, it was found that often-neglected semiconductor properties, specifically band structure modification due to doping and surface states, strongly affect LSPR modulation. Fermi level pinning by surface defect states creates a surface depletion layer that alters the LSPR properties; it determines the extent of LSPR frequency modulation, diminishes the expected near field enhancement, and strongly reduces sensitivity of the LSPR to the surroundings
    • …
    corecore