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Abstract. To understand the complicated dynamic behavior of a Nonlinear Piezoelectric Energy Harvester (NPEH), this paper 
develops an improved Complex Dynamic Frequency (CDF) method based on complex normal form. CDF introduces a dynamic 
frequency factor and establishes a set of algebraic equations in handling the effect of higher-order nonlinear terms in a wide 
frequency band to obtain periodic responses of NPEH. Numerical and experimental studies verify that the proposed CDF gives 
consistent and accurate predictions of the systems with both weak and strong nonlinearity. Furthermore, through an implicit 
relationship between magnet arrangement and output performance, one may effectively control the sweep frequency with 
softening and hardening characteristics. That is a major breakthrough toward the further nonlinear design for broad bandwidth 
harvesters. As the application, the experimental results reveal the high response profiles can be in a wide frequency range from 
10.8Hz to 24.5Hz for the NPEH developed that allows an output power of 9 times higher than the conventional linear structure. 
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1. Introduction 
 

The increasing demand for powering microwatt wireless intelligent devices has drawn considerable 

research attentions towards energy harvesters [1, 2], which convert ambient mechanical vibration into 

electrical energy, realizing the long-lasting energy supply to the devices. The traditional energy harvesters 

are designed as linear resonators, the shortage of which is that their output power drops dramatically 

under off-resonance excitations. In order to achieve high-efficiency broadband vibration energy 

harvesting, researchers have developed kinds of broadband harvesters via nonlinear strategies [3-7].  

Herein, the mechanism are realized by using nonlinear magnet force, spring and mechanical 

constructions. With nonlinear magnetic force and piecewise linearity, a broadband quin-stable energy 

harvester was introduced by Wang et al. [3]. Leadenham et al. [4] developed an M-shaped nonlinear 

oscillator that relies on inherent geometric nonlinearity. Pennisi et al. [5] investigated the dynamic 

behavior of a nonlinear energy harvester in which the magnetic force and the stretching strings 

interactions produce a cubic stiffness nonlinearity. In [6], a nonlinear energy harvester was proposed that 

adopts cantilever-surface contact to regulate the bandwidth of the harvester. In another study, Younesian 

et al. [7] demonstrated that nonlinear spring could be implemented using oblique springs.  

Although various nonlinear harvesters have been extensively studied by experiments, calculating the 

frequency response curves analytically is still a challenging problem. This is because the conventional 

quantitative analysis methods [8, 9] mainly concentrate on weakly nonlinear systems. Among these 

approaches, the complex normal form (CNF) reduces the workload by introducing complex domain to 

reduce the order of the weakly nonlinear system. Zhang et al. [10] introduced the undetermined 

fundamental frequency (UFF) which extends the CNF to the strongly nonlinear system. However, UFF 

needs multiple iterations to obtain accuracy periodic solutions of the complicated non-Z2 symmetry, 

which increases computational complexity. Zhang et al. [11] presented a dynamic frequency method, 

where the nonlinearities boil down to a time-period frequency, which greatly decreases the difficulty of 

quantitative analysis in UFF. However, it has been found that the solution is often less accurate, which 

leads to inaccurate refinement in tuning the nonlinear harvesters. 

This work investigates a complex dynamic frequency method (CDF) to analyze and optimize the 

harvester with strong nonlinearity to maximize the output power. Following sections will explain the 

theory of the CDF, numerical verification, and applies the proposed approach to obtain the optimal 
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amplitude-frequency response has been confirmed by the experiments.
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2. CDF development 
 

2.1 CDF theory 
 

Consider the following general nonlinear system: 
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where ω0 is the linear frequency, and ( , )f u u  can be a power series in terms of displacement u  and 

velocity u . To improve the UFF, dynamic frequency ( )t  is introduced and Eq. (1) can be expressed: 
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     ,   is a bookkeeping parameter, 10ω  is the undetermined 

fundamental frequency [10], 1 ( )k t  is the the kth order dynamic frequency, and b  represents the static 

equilibrium position. Differentiating Eq. (2) with respect to t yields: 
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where we consider the first order approximation n=1. Substituting Eqs. (1) and (2) into Eq. (3), gives: 
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Applying trigonometric identities to balance the same terms on both sides of the Eq. (4) obtains the 

unknown variables a, b, ω10, ω11(t). No matter how intricate the governing equation is, it will be 

transformed into four algebraic equations. This will greatly reduce the workload and difficulty of the UFF. 

Other higher order solution can be determined with the similar procedure. However, the perturbation 

procedure will be increasingly cumbersome as the order goes up. More importantly, the computational 

results show that the first order approximation is fairly accurate. The basic algorithm is: 
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Hence, the approximate solution of Eq. (1) is: 

u=b+a cos θ(t), θ(t)=∫ω(t) dt (6) 

It should be specially explained that the integration of ω11(t) produces a static frequency component 

Λ11. Then, as the example, the first order dynamic frequency ω=ω10+Λ11 is applied for the following 

discussion. 
 

2.2 Demonstration of CDF  
 

To show the use of CDF proposed, a typical non-Z2 symmetric system of Eq. (11) is considered: 
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Based on Eqs. (4) and (5), the approximate solution to Eq. (7) can be obtained from the following 

algebraic equations: 
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Fig. 1 presents the phase diagrams of the nonlinear system. It can be seen that the result by CDF is 

more accurate as it is closer to numerical simulation (NS), compared with that of CNF and UFF for the 

strongly nonlinear system, shown in G2 plot in the right column. Particularly, Table 1 illustrates that the 
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CDF provides excellent approximations to the period and amplitude for both weakly (G1) and strongly 

(G2) nonlinear systems. This demonstrates that CDF method proposed is more accurate in predicting the 

behavior of nonlinear systems with different strength of nonlinerity. In future work, focus can be placed 

on the analyzing partial differential system [12] with the CDF. 

 

Fig. 1. The phase diagrams of the nonlinear system (1-CNF, 2-UFF, 3-CDF, 4-NS) 
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Table 1 Comparison of the period and the amplitude of Eq. (7) by different methods 

Group Variables NS CNF UFF CDF 

G1 

Period 3.216 3.216 3.216 3.216 

Amplitude 0.366 0.366 0.365 0.366 

G2 
Period 2.437 2.195 2.394 2.405 

Amplitude 1.150 1.381 1.155 1.153 

 

3. Characteristics of the NPEH 
 

 

Fig. 2. (a) Schematic diagram of the harvester and (b) configurations of the permanent magnets 

As shown in Fig 2, the NPEH system consists of a beryllium bronze cantilever beam, an MFC 

piezoelectric layer attached to the beam. To amplify the tip displacement of the harvester at a low 

excitation level, a repulsive magnetic force is introduced into the harvester. Magnet A acts as the proof 

mass repulsed by the other two fixed magnets B and C. Other parameters of the harvester are in Table2. 

Applying the Kirchhoff’s and Newton’s law, the system with the circuit can be described with [13]:
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where m, x, c, ki, Cp, RL, V and χ are mass, relative displacement of the mass, damp, stiffness, capacitance, 

load resistance, output voltage, and electromechanical coupling coefficient respectively. In particular, the 

nonlinear stiffness k3 and k5 are induced by the magnetic force, which will be obtained by simulation with 
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the Ansoft Maxwell software. cos  y A   is the external excitation, where A   and    are the 

amplitude and frequency. To reduce the number of independent parameters, dropping the hats, and 

considering that Cp <<1/RL yields: 

2 3 5
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Table 2. Parameter values of the harvester 

Parameter Beam young’s modulus MFC young’s modulus MFC strain coefficient Capacitance 

Values 128 GPa 33.36 GPa -1700 pc/N 49.84 nF 

 

3.1. Obtaining steady responses by CDF  
 

To obtain a steady-state response, the response frequency is set to the excitation frequency. Substituting 

Eq. (2) into Eq. (9), and combining Eq. (5) obtains the amplitude-frequency response function: 
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The power of the load resistance is considered to be the effective power, which can be expressed [13]: 
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where Pav is the averaging power, and T is the time period. The expression of a2 can be rewritten as a 

function of Pav from Eq. (11) and substituted into Eq. (10) results in: 
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3.2. Dynamic behaviors  
 

The magnet distance d is one of the key parameters regulating the performance of the harvester. For a 

smaller magnetic distance, the multi-valued response exists in a broader frequency range. This means that 

the increasing magnetic distance improves the response amplitude and weakens the possibility of the 

existence of multiple solutions. Besides, increased magnet distance will increase the size of the prototype 

and results in reduced energy density. Therefore, appropriate distance should be selected to ensure the 

conversion efficiency of the harvester. Fig. 3(b) presents that the output of a linear system without the 

external magnet is much less than that of a nonlinear system under the same excitation condition (linear: 

d=∞, Pav=20.96 μW; nonlinear: d=60mm, Pav=167.78 μW). 

 

Fig. 3. The influences of magnet distance d on system performances (a) the amplitude-frequency and (b) power-frequency 

response at the sinusoidal acceleration of 3m/s2 

In addition, in the magnet distance about 55-65mm the harvester has softening and hardening 

characteristics, which allows harvester to sense ultralow frequency excitation and triggers frequency up-

conversion to improve the output power. Thus, the effective control of the sweep frequency with softening 
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and hardening characteristics will benefit the nonlinear design of the structure. 
 

4. Experimental validation 
 

4.1. Experimental system 
 

 

Fig. 4. (a) Experimental setup and (b) nonlinear energy harvester 

The testing system is shown in Fig. 4. The NPEH is excited by an APS 400 shaker, which is driven by 

signals with different frequency and amplitudes produced by an Agilent 33250A generator and amplified 

by an APS 125 amplifier. The vibration acceleration and output voltage are measured and recorded by the 

B&K 3039 signal analyzer. 
 

4.2 Results and discussion 
 

To identify the damping ξ and linear frequency ω0, a small initial excitation was given to the beam [4]. 

The results indicate that the damping ratio to be determined as 0.0044 and the linear frequency as 81rad/s. 

Fig. 5 plots the root mean square (RMS) voltage and output power of the harvester versus load 

resistances at the resonance frequency of 22 Hz under 6m/s2 sinusoidal acceleration. Along with the 

increase of the load resistances, the output voltage increases rapidly and then increases slowly until 

reaches saturation condition due to the load resistance far surpassing the internal resistance. With the 

increase of load resistance, the output power rises to the peak value of 184 μW and then decreases. The 

optimum load resistance is 140 kΩ corresponding to the output peak value. 

  

Fig. 5. Output voltage and power versus load resistance at the 

frequency of 22 Hz under 6m/s2 sinusoidal acceleration 

Fig. 6. RMS displacement versus frequency under  

6m/s2 sinusoidal acceleration 

The RMS voltage response of the harvester under acceleration excitation of 6m/s2 is shown in Fig. 6. 

It can be seen that the operating frequency band is roughly consistent with the theory in trend, which is 

predicted in Section 3. This means the proposed approach is able to accurately predict NPEH system with 

softening and hardening characteristics. The small discrepancy of the frequency band between theory and 

experiment results is probably due to the simulation of magnetic force, prototype imperfect assembly and 

unavoidable measuring errors. 
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5. Conclusions 
 

The complex dynamic frequency method (CDF) captures the high order nonlinear effect into the 

dynamic frequency to improve the accuracy of analytical computation. It is particularly suitable to analyse 

and refine the harvester with the complicated nonlinear structures, such as multi-stable, piecewise 

linearity and nonlinear stiffness and so on. Specifically, it has found that the refined harvester has the 

potential behaviors allowing for enhanced performances: 

a. With the increase of magnet distance, the output power shows the maximum value: Pav=194.2μW at 

d=52.5mm and then decreases gradually when the vibration is at the frequency of 22 Hz with an amplitude 

of 3m/s2. The maximum output power of the nonlinear harvester can achieve more than 9 times, compared 

with the linear harvester with the similar configuration. 

b. The softening characteristic extends the operating band of the harvester to low frequencies, and the 

hardening characteristic achieves up-frequency to improve the output power and broaden the bandwidth 

of the harvester. 
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