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1. Introduction 

Throughout the life of an individual organism, a successful host defense relies on the 
coordination of innate and adaptive immunity (McQueen and Parham, 2002). Natural killer 
(NK) cells are characteristic cytolytic cells that are integral components of innate immunity 
and play a major role both in the direct destruction of infected or transformed cells and in 
the production of cytokines and chemokines that mediate inflammatory responses and exert 
a regulatory effect on the adaptive immune responses (McQueen and Parham, 2002; Moretta 
et al., 2006). Cells become susceptible to NK cell-mediated killing following downregulation 
of cell surface MHC class I expression after virus infection, which ultimately leads to escape 
from the MHC-restricted adaptive immune system; a phenomenon also seen in metastasized 
tumor cells. MHC class I-specific NK receptors (NKR) have acquired the ability to detect 
immune escape variants and in rodents and primates can be grouped into two distinct 
classes of MHC class I-specific receptor families based on protein structure: the C-type lectin 
superfamily (Cl-SF) and the immunoglobulin superfamily (Ig-SF). Humans possess a large 
family of killer cell immunoglobulin-like receptors (KIR) that belong to the Ig superfamily, 
whereas mice express lectin-like Ly49 receptors that are now not present in humans, except 
for a single nonfunctional gene fragment (Lanier, 1998, 2001; Vilches and Parham, 2002; 
Takei et al., 2001). A third family of NKR, the lectin-like CD94/NKG2 heterodimers, are 
structurally and functionally conserved between rodents and primates and interact with 
their ligands: nonclassical MHC class I molecules and some specific ligands that are 
differentially expressed in different tissues in response to different stresses (McQueen and 
Parham, 2002; Moretta et al., 2006; Raulet et al., 2001; Uhrberg et al., 1997; Valiante et al., 
1997). The actions of NK cells, therefore, are thought to be mediated by the complex 
interactions between inhibitory and activating signals sent by cell-surface receptors 
following ligation (Lanier, 2005; Ravetch and Lanier, 2000). 
Malignant cells in tumor growth frequently demonstrate alterations in MHC class I 
expression that play a major role in their ability to escape immune recognition and killing 
(Dunn et al., 2002; Campoli et al., 2005). NK cells enhance their cytotoxic function and 
immune regulation by using their stimulatory and inhibitory receptors to maintain the 
constant balance in the immune system (Chang and Ferrone, 2006). There are major 
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questions, however, regarding the molecular mechanisms that govern the shape of the NK-
cell receptors and MHC class I molecules or other ligands that exhibit an exceptionally high 
degree of genetic polymorphism in a clonally distributed fashion. Studies, therefore, that 
focus on the molecular mechanisms that govern the expression of NK-cell receptors and 
their ligands may provide improved strategies of active-specific immunotherapy for the 
treatment of cancer, infection and other diseases (Campoli and Ferrone, 2008; Krukowski et 
al., 2011; Gao et al., 2009). Some stimulators, including viruses, tumor cells and heat shock, 
could promote the expression of NK-cell receptors and their ligands via activation of certain 
transcription factors that are capable of regulating activity of NKG2 promoters. Epigenetic 
mechanisms, including DNA methylation and histone posttranslational modification, are 
also critical for expression of NK-cell receptors and their ligands, and may control the clonal 
distribution of some NK-cell receptors. These effects may influence the performance of NK-
cell functions. In this review, we will discuss the recent advances in transcriptional 
regulation and epigenetic control of the expression of NK-cell receptors and their ligands 
(and of KIR and NKG2 receptor families in particular).  

2. Regulation of gene expression – An introduction in the transcriptional 
level 

Mechanisms that underlie the control of gene expression, which drives the processes of gene 
morphogenesis and distribution, are complex. Transcription regulation at every step of the 
process is subject to dynamic regulation in the cell (Beckett, 2009; Pan et al., 2010). This 
regulation includes structural changes in the chromatin to make a particular gene accessible 
for transcription, transcription of DNA into RNA, splicing of RNA into mRNA, editing and 
other covalent modifications of the mRNA, translation of mRNA into protein, and, finally, 
posttranslational modification of the protein into its mature functional form. Information on 
molecular details of each of these regulatory steps is becoming increasingly available (Fry 
and Peterson, 2002; Mitchell and Tjian, 1989). 

2.1 Transcriptional factor regulation 
Regulation at the transcriptional level is a critical mechanism of controlling gene expression. 
Transcription is controlled by trans-acting factors that regulate spatiotemporal gene 
expression by associating with cis-acting elements such as promoters, enhancers, and other 
regulatory regions. Transcription factors perform this function either alone or with other 
proteins in a complex and by promoting or blocking the transcription of genetic information 
from DNA to RNA (Mitchell and Tjian, 1989; Alexander and Beggs, 2010; Brivanlou and 
Darnell, 2002; Karin, 1990). A defining feature of transcription factors is that they contain 
one or more DNA-binding domains (DBDs), which attach to specific DNA sequences 
adjacent to the genes that they regulate. In eukaryotes, an important class of transcription 
factors, called general transcription factors (GTFs), is necessary for transcription to occur. 
Many of these GTFs do not actually bind to DNA but are parts of the large transcription 
preinitiation complex that interact directly with RNA polymerase. The most common GTFs 
are transcription factor II members (TFIIA/B/D/E/F and TFIIH). There are also some 
nonclassical transcription factors that play crucial roles in gene regulation, including 
coactivators, chromatin remodelers, histone acetylases, deacetylases, kinases, and 
methylases, which lack DNA-binding domains (Brivanlou and Darnell, 2002; Karin, 1990; 
Dowell, 2010; van Nimwegen, 2003). 
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2.2 Epigenetic control( 
Transcription is also controlled by epigenetic regulation that is defined as gene-regulation 

activity that does not involve changes in the underlying DNA code and includes DNA 

methylation and a variety of histone protein posttranslational modifications (Feng et al., 

2010; Furumatsu and Ozaki, 2010). DNA methylation usually occurs in CpG islands, CG-

rich regions that are “upstream” of the promoter region. The letter “p” here signifies that C 

and G are connected by a phosphodiester bond. In humans, DNA methylation is carried out 

by a group of enzymes called DNA methyltransferases. These enzymes not only determine 

DNA methylation patterns during early development, but are also responsible for copying 

these patterns to the strands generated from DNA replication. DNA methylation can alter 

condensed chromatin structure by influencing histone–DNA and histone–histone contact. 

Methylation of the promoter and 5′ region of the gene and methylation of histone are 

associated with transcriptional silencing (Bird, 2002; Bird and Wolffe, 1999; Law and 

Jacobsen, 2010). 

Acetylation and methylation of histones are the most general and important histone 

modifications associated with transcriptional activation. Histone acetylation is catalysed by 

histone acetyl transferases (HATs), whereas the reverse reaction is performed by histone 

deacetylases (HDACs) (Furumatsu and Ozaki, 2010). HATs and HDACs are classified into 

many families that are often conserved throughout evolution from yeast to humans. Histone 

H3 is primarily acetylated at several lysine residues, Lys9, 14, 18, 23, 27 and 56, whereas 

histone H4 is acetylated at Lys5, 8, 12 and 16 (Su et al., 2004). Interestingly, methylation is 

often modified at lysine and arginine residues in histones H3 and H4. It has been suggested 

that these modifications constitute a “histone code”; the “code” hypothesis speculates that 

this modification pattern is read by proteins that recognize distinct modifications 

specifically and then regulate chromatin dynamics and genome function (Wang et al., 2004; 

Kisliouk et al., 2010). Whether these modifications form a true code is still under discussion. 

The processes of histone modification and DNA methylation can both influence each other. 

Moreover, DNA methylation and suppressive histone modifications may prevent 

transcription, even when transcription factors are abundant. In turn, transcription factors 

may cause alterations in DNA methylation and histone modifications (Furumatsu and 

Ozaki, 2010; Fernandez-Morera et al., 2010; Strahl and Allis, 2000). Molecular details of the 

transcriptional regulators involved in expression of many NK-cell receptors and their 

ligands are becoming increasingly available, especially for the NKG2 and KIR receptor 

families and their ligands. 

3. Transcription factor regulation and epigenetic control of the expression of 
NK-cell receptors and their ligands 

3.1 NKG2 receptor family  
In humans, the NKG2 receptor family comprises seven members called NKG2A, NKG2B, 
NKG2C, NKG2D, NKG2E, NKG2F and  NKG2H; NKG2A/B and NKG2E/H pairs are splice 
variants of the same gene (Brostjan et al., 2000; Glienke et al., 1998). All members of the 
NKG2 family, except NKG2D, share substantial sequence homology, are closely linked, and 
of the same transcriptional orientation; they contain conserved sequences at the 
transcriptional start site and at other transcription factor-binding sites, such as the TCF-1 
(testosterone conversion factor-1) and GATA-1 (GATA-binding factor 1) sites. These 
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members of the NKG2 family form disulfide-linked heterodimers with CD94. Each member 
of the NKG2 family, however, has a unique repeat Alu sequence that functions as a gene 
promoter. Alu repeats are the putative binding sites for several transcription factors: 
activator protein-1/3 (AP-1/3), cAMP response element binding/activating transcription 
factors (CREB/ATF), CCAAT/enhancer binding protein (C/EBP), transcription factor-1 
(Sp1), nuclear factor-1/CCAAT transcription factor (NF-1/CTF) and lymphocyte-specific 
DNA-binding protein-1 (LyF-1), and may contribute to differences in gene regulation 
among family members (Brostjan et al., 2000; Glienke et al., 1998). The CD94 protein 
associates with different NKG2 isoforms to form heterodimeric receptors that function either 
to inhibit or to trigger cytotoxicity of NK cells, depending on the NKG2 isoform. 
Functionally, therefore, CD94/NKG2 heterodimers are divided into activating (NKG2C, 
NKG2E/H) or inhibitory (NKG2A/B) isotypes (Glienke et al., 1998). It has also been shown 
that several cytokines, including interleukin (IL)-12 (Derre et al., 2002), transforming growth 
factor (TGF)-┚ (Bertone et al., 1999), IL-15  (Mingari et al., 1998) and IL-10 (Romero et al., 
2001), are capable of inducing expression of CD94/NKG2 in human NK or T cells, in which 

IL-15 and TGF- can upregulate CD94/NKG2A, but not other CD94/NKG2 receptors 
(Wilhelm et al., 2003). NKG2D is a special activating receptor that is not covalently 
associated with CD94. NKG2D is downmodulated by TGF-┚, but markedly upregulated by 

IL-15, interferon (IFN)- and IL-12 stimulation in primary NK cells (Dasgupta et al., 2005). 

IFN- can stimulate the expression of NKG2D, but inhibits the expression of the inhibitory 
receptor NKG2A, and therefore alters the balance of stimulatory and inhibitory receptors in 
favor of activation, leading to NK-cell-mediated cytotoxicity. IFN-┛ addition exerts the 
opposite effect (Zhang et al., 2005). 
CD94 is a C-type lectin and is required for the dimerization of the CD94/NKG2 family of 
receptors, which are expressed on NK cells and T-cell subsets. The CD94 and NKG2 genes 
are located in the center of the NK-gene complex between the NKRP1 and PRB3 loci in the 
region containing the STS markers D12S77 and D12S1093. All six genes are closely linked 
and are situated 100 to 200 kb proximal to the D12S77 STS marker (Sobanov et al., 1999). The 
CD94 gene is placed in the opposite orientation relative to the NKG2 gene family members 
(which all have the same transcriptional orientation). CD94 gene expression is regulated by 
distal and proximal promoters that transcribe unique initial exons specific for each 
promoter. Both promoters contain elements with IFN-┛-activated and E26 transformation-
specific (ETS)-binding sites (called GAS and EBS respectively). The two promoters 
differentially regulate expression of the CD94 gene in response to treatment with IL-2 or IL-
15 (Lieto et al., 2003).  

3.2 Ligands of NKG2D-MIC 
The two types of NKG2D ligands are MHC class I chain-related proteins (MICA and MICB) 
and UL16-binding proteins (ULBP) (Sutherland et al., 2001; Bauer et al., 1999). MICA and 
MICB are located in the MHC complex within the 6q21.3 chromosomal region. The ULBP 
family contains 10 genes, of which five are expressed (ULBP1–5). ULBPs are located outside 
the MHC gene complex, in the 6q24.2–25.3 region (Samarakoon et al., 2009). These 
molecules exhibit highly restricted expression in healthy tissues but are widely expressed on 
epithelial tumors. In hematological malignancies they are upregulated in nontumor and 
tumor cells by genotoxic stress (Kim et al., 2006; Venkataraman et al., 2007). Aligned 
cosmid-derived regions 1.5 kb upstream of the translation start codon (ATG) in MICA and 
MICB share approximately 90% sequence identity. The 5′-end flanking regions of MICA and 
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MICB contain putative heat shock elements (HSE) that are prototypic transcription inducer 
sites in heat shock protein-70 (HSP70) genes and that bind activated trimeric heat shock 
factor protein-1 (HSF1). Cytomegalovirus (CMV) infection results in up to a 10-fold increase 
in cell surface MIC expression and is associated with induced HSP70 expression. TATA-like 
elements and Sp1 consensus sites, as with HSE, are located unusually far “upstream” from 
MIC gene, but can also moderately or profoundly affect stress-induced and proliferation-
associated induction. The common integrating conjugative element (ICE), however, appears 
to be a negative regulator of MICB, but not of MICA. It is an important to note, although the 
sequences of MICA and MICB promoters are very similar, the baseline transcriptional 
activity of MICA is higher than that of MICB and they have different regulatory 
mechanisms for expression. Most MICA transcripts start downstream of the conserved AP-1 
TATA-like motif, a region that lacks a recognizable RNA start site. In contrast, most MICB 
transcripts initiate further upstream, proximal to the HSE–Sp1–ICE elements 
(Venkataraman et al., 2007). Nuclear factor kappa-light-chain-enhancer of activated B cells 
(NF-κB) regulates MICA expression on activated T lymphocytes and on HeLa tumor cells by 
binding to a specific sequence in the long intron 1 region of the MICA gene (Molinero et al., 
2004). Histone deacetylase inhibitor (HDAC-I) and sodium valproate (VPA) induced 
transcription of MICA and MICB in hepatocellular carcinoma cells, leading to increased cell 
surface, soluble and total MIC protein expression (Armeanu et al., 2005). Similar results 
have been obtained using histone deacetylase inhibitors FR901228 and SAHA (Skov et al., 
2005). In our laboratory, we found that VPA can increase the expression of HSP70 and Sp1 
and increase the binding of transcription factors Sp1 and HSF1 to the MICA/B promoter. 
This activation leads to the upregulation of MICA/B in HeLa and HepG2 tumor cells 
(Zhang et al., 2009). 

3.3 Ligands of NKG2D-ULBPs 
All expressed ULBPs (ULBP1–5) have good conservation of the coding sequence, but the 5′-
end flanking regions of these genes have little homology. This situation suggests that ULBPs 
are regulated specifically in response to different stimuli or pathogens (Lopez-Soto et al., 
2006). Mechanisms that regulate the expression of ULBP1 have been described previously. 
In the core region of the ULBP1 promoter, there are many binding sites for transcription 
factors, including a canonical TATA box, three GC boxes, one overlapping sequence 
GC(4)/AP-2, two cytokinin response element (CRE)-like sequences (CRE1 and CRE2) (Zeng 
et al., 1997; Wajapeyee and Somasundaram, 2003), and one NF-κB site. Transcription of 
ULBP1 depends strictly on binding of Sp1 and Sp3 to a CRE1 site located in the ULBP1 
minimal promoter. The mutation or deletion of this Sp1/Sp3 binding site abolished ULBP1 
transcription; Sp3 is the main transcription factor that regulates ULBP1 through the CRE1 
site. AP-2┙, however, repressed the expression of ULBP1 by binding to the GC(4)/AP-2┙ 
site and interfering with the binding of Sp3 and Sp1 to the ULBP1 promoter (Lopez-Soto et 
al., 2006). It has been shown that heat shock and ionizing radiation treatment can induce the 
expression of ULBP1/2/3 in human cancer cell lines; HSP 70 is induced by heat shock but 
not by ionizing radiation (Kim et al., 2006). Human cytomegalovirus (HCMV) can also 
induce the expression of ULBP1/2/3 proteins that are predominantly localized in the 
endoplasmic reticulum of infected fibroblasts together with UL16 (Rolle et al., 2003). There is 
interplay, however, between virus and host cells depending on the viral dose. At low viral 
dose, ULBP1 or ULBP2 surface expression is completely inhibited compared with ULBP3, 
while at a higher viral doses cell surface expression of ULBP1 and ULBP2 is delayed (Rolle 
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et al., 2003). Whether this phenomenon is mediated through the ULBP promoter or through 
transcription factors needs to be investigated further. 
Epigenetic modulations are also likely to play a large part in the observed alteration in 
ULBP expression. Current observations imply that loss of DNA methylation (deficient in 
DNA methyltransferase cells) is correlated with increased ULBP2 mRNA levels. It has been 
shown that both demethylation of the ULPB2 promoter, necessary for increased protein 
levels, and the RAS/MEK signaling pathway, shown to control DNA methylation (Lund et 
al., 2006), are necessary for maximal protein expression (Sers et al., 2009). In addition, the 
HDAC inhibitor trichostatin A (TSA) is reported to upregulate ULBP1–3 expression in 
tumor cells; Sp3 was found to be crucial for activation of the ULBP1 promoter by TSA. One 
report showed that HDAC3 is recruited to the ULBP1 promoter and acts as a repressor of 
ULBP expression in epithelial cancer cells. TSA treatment interfered with this interaction 
and caused the complete release of HDAC3 from the ULBP1–3 promoters (Lopez-Soto et al., 
2009).  

3.4 KIR receptor family and their ligands 
(The KIR family is of particular interest because individual members bind to specific 

subgroups of HLA allele products, such as HLA-A, HLA-B, HLA-C, and HLA-G, although 

most KIRs show 90–95% amino acid identity. The high level of homology can facilitate 

exchange of exons between different KIR loci, by some form of crossing over or gene 

conversion (Wilson et al., 2000). One study found that due to the polymorphism of KIR 

genes, two KIR haplotypes segregated at roughly equal frequency in a largely Caucasian 

population. Group A haplotypes contained seven KIR genes and had KIR2DS4 as the only 

activating receptor. Group B haplotypes had a greater diversity of KIR genes, had more 

activating receptors, and were characterized by the KIR2DL2, KIR2DS1, KIR2DS2, KIR2DS3, 

and KIR2DS5 genes (Uhrberg et al., 1997). KIR can also be further subdivided into inhibitory 

receptors that carry an inhibitory signal motif within their cytoplasmic domain (KIR2DL 

and KIR3DL) and into stimulatory receptors (KIR2DS and KIR3DS) that lack this motif. 

Most of the inhibitory KIRs are specific for the products of HLA class I genes like such as 

HLA-A/-B and HLA-C (Bellon et al., 1999; Colonna et al., 1993; Dohring et al., 1996). The 

ligand specificities of many stimulatory KIR are uncertain and might include non-HLA class 

I ligands. KIR2DL4, however, combines structural and functional features of both 

stimulatory and inhibitory KIR and is reported to bind to the nonclassical class I protein 

HLA-G (Chan et al., 2003; Martin et al., 2000; Trompeter et al., 2005; Santourlidis et al., 2002). 

The expression of KIR appears to be largely independent of each other and the impact of the 

requirement for inhibition by self class I molecules on the shape of the KIR repertoire is 

rather subtle. 

3.4.1 Transcriptional factors regulation of KIR  
Different groups of 2–9 KIR genes are expressed in NK clones, but the sequences of the KIR 
promoters are homogeneous in their 5′-untranslated regions (5′ UTR), except for that of 
KIR2DL4 (Valiante et al., 1997; Wilson et al., 2000). The sequences of KIR genes comprise a 
continuous loop that extends seamlessly from gene to gene. The repeat of the loop is broken 
only by a region 14 kb upstream of the KIR2DL4 locus, which displays some unique features 
and is characterized by L1 repeats. The sequence upstream of KIR2DL4 may be significant 
because this gene is unique in this group in being expressed in 100% of NK clones (Valiante 

www.intechopen.com



Transcription Regulation and Epigenetic 
Control of Expression of Natural Killer Cell Receptors and Their Ligands 

 

433 

et al., 1997; Wilson et al., 2000; Martin et al., 2000). Moreover, KIR2DL4 is the only KIR gene 
that lacks the repeat region in intron 1. All KIR genes lack typical promoter features such as 
TATA and CAAT boxes, so many transcription factor binding sites have been predicted to 
be present in the upstream regions of KIR, including sites for transcription factors CREB, 
SP1, ETS, AP-1 and AP-4 (Chan et al., 2003; Santourlidis et al., 2002). None of these elements 
alone, however, is required for or significantly increases promoter activity, except for a 
CREB site located outside the core promoter region. To date, the basic KIR promoter appears 
to either require undefined transcription factors or alternatively only interacts with the basic 
transcription machinery of RNA polymerase II (Trompeter et al., 2005). It has been 
suggested previously that a binding site for the transcription factor AML/Runx (Runt 
Homology Domain Transcription Factors) at –100 bp can be essential for KIR expression 
(Vilches et al., 2000). However, a further study suggested that AML has a general inhibitory 
influence on KIR expression in mature NK cells and that AML exerts its repressor function 
by binding directly to the promoter of the different KIR genes (Trompeter et al., 2005). 
Recently, it was reported that the transcription factor c-Myc upregulated KIR gene 
transcription through direct binding to an upstream distal promoter element in peripheral 
blood NK cells, and that IL-15 promoted this effect (Cichocki et al., 2009). It was suggested 
that the role of the traditional transcription factors in KIR gene expression is different from 
that in other genes. 

3.4.2 Histone modifications of KIR  
 It was found that histone H3 and H4 proteins are substantially acetylated at the Lys9 and 

Lys14 positions and H4 acetylation at the 5th, 8th, 12th, and 16th positions in both 

KIR3DL1+ and KIR3DL1– NK cells (Chan et al., 2005). The level of KIR3DL1-associated 

histone acetylation and methylation was higher in KIR3DL1+ NK cells than in KIR3DL1– 

NK cells; however, histone H3 methylation at Lys4 (H3K4) is only 2.6-fold higher in 

KIR3DL1+ NK cells than that in KIR3DL1– NK cells, although the histone H3K4 methylation 

levels correlated well with the KIR3DL1 promoter to lead to upregulation of KIR3DL1 gene 

expression, named KIR3DL1-associated histone H3K4 methylation. These findings indicate 

that histone acetylation and trimethylated modifications, but not histone H3 methylation, 

are preferentially associated with the transcribed allele in NK cells with monoallelic KIR 

expression (Santourlidis et al., 2002; Chan et al., 2005). 

KIR expression is increased on T cells with increasing age, and can contribute to age-related 

diseases (van Bergen et al., 2004). In these cells, the KIR2DL4 promoter is partially 

demethylated, and dimethylated H3L4 is increased; all other histone modifications are 

characteristic of an inactive promoter. In comparison, NK cells have a fully demethylated 

KIR2DL4 promoter and have the full spectrum of histone modifications indicative of active 

transcription with H3 and H4 acetylation. These findings suggest that an increased T-cell 

ability to express KIR2DL4 with age is conferred by a selective increase in H3L4 

dimethylation and limited DNA demethylation (van Bergen et al., 2004; Li et al., 2008).  

3.4.3 DNA demethylation of KIR  
Methylation status of CpG islands in NK cells correlates with transcriptional activity of KIR 
genes. The overall structure of the CpG islands is similar in all expressed KIR, with complete 
conservation of four CpG dinucleotides upstream of the transcriptional start site, with the 
exception of KIR2DL4, which shows a highly divergent profile with lower CpG density. In 
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addition, CpG islands with <70% of methylated CpGs are exclusively found in the 
expressed KIR2DL3, whereas CpG islands of nonexpressed KIR2DL3 and KIR3DL2 are 
consistently methylated at 70–100% of CpG dinucleotides (Santourlidis et al., 2002). Analysis 
of the methylation status at individual CpG sites demonstrated that differential methylation 
of expressed versus nonexpressed KIR is not restricted to specific CpGs, but is consistently 
found throughout the CpG islands. That is to say, the methylated CpG islands are associated 
with transcriptionally silent KIR and unmethylated CpG islands with expressed KIR genes 
(Chan et al., 2003; Santourlidis et al., 2002). 
In addition, exposure to a DNA methyltransferase inhibitor, 5-aza-2′-deoxycytidine (5azaC), 
effectively induced the whole range of KIR expression in NK cells (Gao et al., 2009; Chan et 
al., 2003; Santourlidis et al., 2002; Chan et al., 2005), but not in other cells of lymphoid or 
nonlymphoid origin. A weak induction of KIR3DL2 following treatment with 5aza-dC was 
observed in a T-cell line (Li et al., 2008; Santourlidis et al., 2008). These results suggested that 
repression of KIR gene transcription is dependent on DNA methylation only in NK cells and 
T cells, and that allele-specific KIR3DL1 gene expression is not only correlated with 
promoter but also with 5′-gene DNA hypomethylation. Further studies showed that 
methylation influenced KIR expression both in immature NK cells and in mature NK cells, 
because KIR promoter-associated CpG islands are indeed DNA-methylated at an early 
developmental stage (Li et al., 2008; Liu et al., 2009). 

3.4.4 A two-step model of epigenetic regulation of KIR 
Recent studies suggested that CpG methylation is functionally linked to histone 

deacetylation, which, in turn, leads to the formation of condensed, transcriptionally 

repressive chromatin (Bird, 2002; Bird and Wolffe, 1999). Altering the state of histone 

acetylation using the deacetylase inhibitor TSA did not change transcriptional activity of 

either expressed or silent KIR genes. Additionally, combined treatment of 5aza-dC and TSA 

did not lead to a synergistic effect compared with 5aza-dC alone. In particularly, the 

expression of KIR2DL4, which is expressed by all human NK clones, was not affected by 

either demethylating or histone-acetylating treatment. This finding indicated that KIR genes 

in NK cells might have already acquired a state of transcriptionally competent chromatin. 

Methylation of KIR CpG islands appears to be the priority epigenetic modification required 

for silencing of specific KIR genes (Santourlidis et al., 2002). In a further study, this point 

was addressed. Hematopoietic progenitor cell KIR genes exhibited the major hallmarks of 

epigenetic repression: dense DNA methylation; inaccessibility of chromatin; and a 

repressive histone signature, characterized by strong H3K9 dimethylation and reduced 

H4K8 acetylation. In contrast, KIR genes in NK cells showed active histone signatures 

characterized by absence of H3K9 dimethylation and presence of H4K8 acetylation. In KIR-

competent lineages, active histone signatures were also observed in silenced KIR genes and, 

in this study, were found in combination with dense DNA methylation of the promoter and 

nearby regions. The study suggested a two-step model of epigenetic regulation in which 

lineage-specific acquisition of euchromatic histone is a prerequisite for subsequent gene-

specific DNA demethylation and expression of KIR genes (Santourlidis et al., 2008). 

3.4.5 HLA-ligand of KIR  
Recently, epigenetic alterations were shown to play a role in HLA changes associated with 
malignant transformation of cells (Campoli and Ferrone, 2008). HLA-G, initially discovered 
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on the fetal–maternal interface, plays a key role in the maintenance of immune tolerance by 
inhibition of NK cells via the receptor KIR2DL4 (Hofmeister and Weiss, 2003); it is expressed 
in some surgically removed melanoma lesions, but there is little expression in established 
cell lines. Treatment of a HLA-G-negative melanoma cell line with 5azaC restored HLA-G 
expression; similarly 5azaC activated HLA-G expression in human leukemia cell lines, even 
in malignant hematopoietic cells isolated from patients with acute myeloid leukemia (AML) 
and chronic lymphocytic leukemia (B-CLL) (Polakova et al., 2009a; Polakova et al., 2009b). 
Further research found that HLA-G was silenced as a result of CpG hypermethylation 
within a 5′ regulatory region upstream of the start codon (Moreau et al., 2003; Yan et al., 
2005). These results determined that regulation of HLA-G expression also involved 
epigenetic mechanisms, such as DNA methylation. There was no significant difference in 
HLA-G expression, however, detected in tumor and normal ovarian surface epithelial cells 
(OSE) samples, although HLA-G expression was significantly increased after treatment with 
5azaC. There was no correlation between methylation and HLA-G gene expression in 
ovarian tumor samples and OSE, which suggested that changes in methylation may be 
necessary, but not sufficient, for HLA-G expression in ovarian cancer (Menendez et al., 
2008). 
In addition, the expression of HLA-A, HLA-B and HLA-C, specific ligands for inhibitory 
KIR (KIR3DL2, KIR3DL1, and KIR2DL1/3) was lost or downregulated in human gastric 
cancer, where the percentage of promoter methylation was higher than in adjacent 
nontumor tissues (Ye et al., 2010). In esophageal squamous cell carcinoma lesions, it was 
also shown that hypermethylation in the gene promoter regions of the HLA-A, HLA-B and 
HLA-C, and altered chromatin structure of the HLA class I heavy chain gene promoters 
have both been implicated as a major mechanism for transcriptional inactivation of HLA 
genes (Nie et al., 2001). Furthermore, the MAPK (mitogen-activated protein kinases) and 
DNA methyltransferases were shown to downregulate HLA-A expression (Sers et al., 2009). 
These findings suggest an association between promoter hypermethylation and the 
downregulated expression of HLA class I molecules.  

4. Regulation expression of NK cell receptors and their ligands as potential 
therapeutics for cancer 

The mechanisms of regulation the gene expression, which requires signalling cascades for 
transducing and integrating regulatory cues to determine which genes are expressed, are 
obligatory for tumorigenesis, tumor progression and metastasis (Bhalla, 2005; Samarakoon 
et al., 2009; Stein et al., 2010). Transcriptional gene regulations, particularly in transcriptional 
factors and epigenetic level, affect several aspects of tumor cell biology, including cell 
growth, proliferation, phenotype, differentiation, DNA repair, and cell death. NK cells are 
the major effector lymphocytes of innate immune system that defend against many forms of 
viral infections and tumor growth without prior sensitizations, by the interaction of 
inhibitory and activating receptors with corresponding ligands on the target cells. This 
raises the strong possibility that regulation expression of NK cell receptors on NK cells and 
their ligands on tumor cells may be an effective treatment strategy for malignant tumors. 
This treatment strategy, as mentioned above, including activation and suppression of the 
transcription factors and promoter activity, modification the DNA methylation in the 
underlying DNA code, and rearrangement the acetylation and methylation of protein in 
histone posttranslational level, leads to the induced or suppressed expression of NK cells 
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receptors and their ligands (Fig. 1), so that the NK cell-mediated immunotherapy can be 
carried out fully to cure malignancies. So the regulation expression of NK cell receptors and 
their ligands provides a strategy for targeting gene expression in tumor cells, and may be 
with minimal offtarget consequences (Villar-Garea and Esteller, 2004; Bhalla, 2005; Szyf, 
2005, Stein et al., 2010). 
  

 

Fig. 1. Transcription regulation and epigenetic control of KIR and NKG2 receptors and their 
ligands. A dendrogram representing the relatedness of different KIR and NKG2 receptors 
(blue) and their ligands (green) to each other, and the extent of the sequence relatedness 
between two genes is shown by the distance of the lines (Raulet, 2003). The left oval shows 
the gene regulation in transcription factor level, while the right oval shows the gene 
regulation in epigenetic level, and the overlapping part shows the co-regulation.  

5. Concluding remarks( 

NK cells not only are important players of innate effecter responses, but also participate in 
the initiation and development of antigen-specific responses through secretion of 

immunoregulatory cytokines (such as IFN-, tumor necrosis factor- (TNF-) and 
granulocyte–macrophage colony-stimulating factor (GM–CSF)) and through cell-to-cell 
contact (Biron et al., 1999). Regulation of the expression of NK-cell receptors and their 
ligands refers to the control of the amount, the timing of appearance, and the functional 
products of these genes, leading to the flexibility of NK cells or other immune cells to adapt 
to a variable environment, external signals, and damages to target cells (Wu et al., 2005). In 
particular, the modification of NK-cell receptors and their ligands is a potential therapeutic 
implication for cancer treatment. Although the regulation mechanism of expression of NK-
cell receptors and related ligands has acquired important progress at the transcription level, 
the regulatory mechanisms of a number of crucial receptors and ligands, for example 
signaling lymphocytic activating molecule (SLAM)-related receptors (CD150, 2B4, Ly-9, 
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CD84, and NTB-A) (Sidorenko and Clark, 2003; Engel et al., 2003; Morra et al., 2001), are not 
well understood. More research is needed into other regulated stages of gene expression, 
such as posttranscriptional modification, RNA transport, translation, and mRNA 
degradation. Investigation of the regulatory mechanisms of NK-cell receptors and their 
ligands might aid in the design of therapy against cancer, infection, inflammation, or 
autoimmune diseases.  
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