121 research outputs found

    Storage of energy in constrained non-equilibrium systems

    Full text link
    We study a quantity T\mathcal{T} defined as the energy U, stored in non-equilibrium steady states (NESS) over its value in equilibrium U0U_0, ΔU=U−U0\Delta U=U-U_0 divided by the heat flow JUJ_{U} going out of the system. A recent study suggests that T\mathcal{T} is minimized in steady states (Phys.Rev.E.99, 042118 (2019)). We evaluate this hypothesis using an ideal gas system with three methods of energy delivery: from a uniformly distributed energy source, from an external heat flow through the surface, and from an external matter flow. By introducing internal constraints into the system, we determine T\mathcal{T} with and without constraints and find that T\mathcal{T} is the smallest for unconstrained NESS. We find that the form of the internal energy in the studied NESS follows U=U0∗f(JU)U=U_0*f(J_U). In this context, we discuss natural variables for NESS, define the embedded energy (an analog of Helmholtz free energy for NESS), and provide its interpretation.Comment: 16 pages, 5 figure

    Inferring geometrical dynamics of cell nucleus translocation

    Full text link
    The ability of eukaryotic cells to squeeze through constrictions is limited by the stiffness of their large and rigid nucleus. However, migrating cells are often able to overcome this limitation and pass through constrictions much smaller than their nucleus, a mechanism that is not yet understood. This is what we address here through a data-driven approach using microfluidic devices where cells migrate through controlled narrow spaces of sizes comparable to the ones encountered in physiological situations. Stochastic Force Inference is applied to experimental nuclear trajectories and nuclear shape descriptors, resulting in equations that effectively describe this phenomenon of nuclear translocation. By employing a model where the channel geometry is an explicit parameter and by training it over experimental data with different sizes of constrictions, we ensure that the resulting equations are predictive to other geometries. Altogether, the approach developed here paves the way for a mechanistic and quantitative description of dynamical cell complexity during its motility

    Flux and storage of energy in non-equilibrium, stationary states

    Full text link
    Systems kept out of equilibrium in stationary states by an external source of energy store an energy ΔU=U−U0\Delta U=U-U_0. U0U_0 is the internal energy at equilibrium state, obtained after the shutdown of energy input. We determine ΔU\Delta U for two model systems: ideal gas and Lennard-Jones fluid. ΔU\Delta U depends not only on the total energy flux, JUJ_U, but also on the mode of energy transfer into the system. We use three different modes of energy transfer where: the energy flux per unit volume is (i) constant; (ii) proportional to the local temperature (iii) proportional to the local density. We show that ΔU/JU=τ\Delta U /J_U=\tau is minimized in the stationary states formed in these systems, irrespective of the mode of energy transfer. τ\tau is the characteristic time scale of energy outflow from the system immediately after the shutdown of energy flux. We prove that τ\tau is minimized in stable states of the Rayleigh-Benard cell

    Consensusabilization for Continuous-Time High-Order Multiagent Systems with Time-Varying Delays

    Get PDF
    For the consensus problems of high-order linear multiagent systems with time-varying delays in directed topologies, the LMI based-consensus criterion and NLMI-based consensusabilization (protocol parameters design that makes the multiagent systems achieve consensus) are investigated. Improved Lyapunov-Krasovskii functional is used for establishing the consensus convergence criteria and deriving the corresponding consensus protocol. In order to reduce the conservativeness, some proper free-weighting matrices are added into the derivative of Lyapunov-Krasovskii functional and that only keeps one necessary zoom. The numerical and simulation examples are given to demonstrate the effectiveness of the theoretical results. Compared with existing literatures, the convergence criterion and protocol design proposed have lower conservativeness

    The Effect of Electrode-Electrolyte Interface on the Electrochemical Impedance Spectra for Positive Electrode in Li-Ion Battery

    Get PDF
    Understanding the effect of electrode-electrolyte interface (EEI) on the kinetics of electrode reaction is critical to design high-energy Li-ion batteries. While electrochemical impedance spectroscopy (EIS) is used widely to examine the kinetics of electrode reaction in Li-ion batteries, ambiguities exist in the physical origin of EIS responses for composite electrodes. In this study, we performed EIS measurement by using a three-electrode cell with a mesh-reference electrode, to avoid the effect of counter electrode impedance and artefactual responses due to asymmetric cell configuration, and composite or oxide-only working electrodes. Here we discuss the detailed assignment of impedance spectra for LiCoO[subscript 2] as a function of voltage. The high-frequency semicircle was assigned to the impedance associated with ion adsorption and desorption at the electrified interface while the low-frequency semicircle was related to the charge transfer impedance associated with desolvation/solvation of lithium ions, and lithium ion intercalation/de-intercalation into/from LixCoO[subscript 2]. Exposure to higher charging voltages and greater hold time at high voltages led to no significant change for the high-frequency component but greater resistance and greater activation energy for the low-frequency circle. The greater charge transfer impedance was attributed to the growth of EEI layers on the charged LixCoO[subscript 2] surface associated with electrolyte oxidation promoted by ethylene carbonate dehydrogenation. Keywords: Batteries - Lithium, Electrode Kinetics, EIS, Electrode-Electrolyte Interface, Li-ion BatteriesBMW Grou

    Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide

    Get PDF
    Electrochemical production of hydrogen peroxide (H2O2) from water oxidation could provide a very attractive route to locally produce a chemically valuable product from an abundant resource. Herein using density functional theory calculations, we predict trends in activity for water oxidation towards H2O2 evolution on four different metal oxides, i.e., WO3, SnO2, TiO2 and BiVO4. The density functional theory predicted trend for H2O2 evolution is further confirmed by our experimental measurements. Moreover, we identify that BiVO4 has the best H2O2 generation amount of those oxides and can achieve a Faraday efficiency of about 98% for H2O2 production

    Causal relationship between thyroid dysfunction and gastric cancer: a two-sample Mendelian randomization study

    Get PDF
    BackgroudGastric cancer is one of the most common cancers worldwide, and its development is associated with a variety of factors. Previous observational studies have reported that thyroid dysfunction is associated with the development of gastric cancer. However, the exact relationship between the two is currently unclear. We used a two-sample Mendelian randomization (MR) study to reveal the causal relationship between thyroid dysfunction and gastric cancer for future clinical work.Materials and methodsThis study is based on a two-sample Mendelian randomization design, and all data are from public GWAS databases. We selected hyperthyroidism, hypothyroidism, free thyroxine (FT4), and thyroid-stimulating hormone (TSH) as exposures, with gastric cancer as the outcome. We used three statistical methods, namely Inverse-variance weighted (IVW), MR-Egger, and weighted median, to assess the causal relationship between thyroid dysfunction and gastric cancer. The Cochran’s Q test was used to assess the heterogeneity among SNPs in the IVW analysis results, and MR-PRESSO was employed to identify and remove IVs with heterogeneity from the analysis results. MR-Egger is a weighted linear regression model, and the magnitude of its intercept can be used to assess the horizontal pleiotropy among IVs. Finally, the data were visualized through the leave-one-out sensitivity test to evaluate the influence of individual SNPs on the overall causal effect. Funnel plots were used to assess the symmetry of the selected SNPs, forest plots were used to evaluate the confidence and heterogeneity of the incidental estimates, and scatter plots were used to assess the exposure-outcome relationship. All results were expressed as odds ratios (OR) and 95% confidence intervals (95% CI). P<0.05 represents statistical significance.ResultsAccording to IVW analysis, there was a causal relationship between hypothyroidism and gastric cancer, and hypothyroidism could reduce the risk of gastric cancer (OR=0.936 (95% CI:0.893-0.980), P=0.006).This means that having hypothyroidism is a protective factor against stomach cancer. This finding suggests that hypothyroidism may be associated with a reduced risk of gastric cancer.Meanwhile, there was no causal relationship between hyperthyroidism, FT4, and TSH and gastric cancer.ConclusionsIn this study, we found a causal relationship between hypothyroidism and gastric cancer with the help of a two-sample Mendelian randomisation study, and hypothyroidism may be associated with a reduced risk of gastric cancer, however, the exact mechanism is still unclear. This finding provides a new idea for the study of the etiology and pathogenesis of gastric cancer, and our results need to be further confirmed by more basic experiments in the future

    Theory of coupled ion-electron transfer kinetics

    Full text link
    The microscopic theory of chemical reactions is based on transition state theory, where atoms or ions transfer classically over an energy barrier, as electrons maintain their ground state. Electron transfer is fundamentally different and occurs by tunneling in response to solvent fluctuations. Here, we develop the theory of coupled ion-electron transfer, in which ions and solvent molecules fluctuate cooperatively to facilitate electron transfer. We derive a general formula of the reaction rate that depends on the overpotential, solvent properties, the electronic structure of the electron donor/acceptor, and the excess chemical potential of ions in the transition state. For Faradaic reactions, the theory predicts curved Tafel plots with a concentration-dependent reaction-limited current. For moderate overpotentials, our formula reduces to the Butler-Volmer equation and explains its relevance, not only in the well-known limit of large electron-transfer (solvent reorganization) energy, but also in the opposite limit of large ion-transfer energy. The rate formula is applied to Li-ion batteries, where reduction of the electrode host material couples with ion insertion. In the case of lithium iron phosphate, the theory accurately predicts the concentration dependence of the exchange current measured by {\it in operando} X-Ray microscopy without any adjustable parameters. These results pave the way for interfacial engineering to enhance ion intercalation rates, not only for batteries, but also for ionic separations and neuromorphic computing

    Continuous non-equilibrium transition driven by the heat flow

    Get PDF
    We discovered an out-of-equilibrium transition in the ideal gas between two walls, divided by an inner, adiabatic, movable wall. The system is driven out-of-equilibrium by supplying energy directly into the volume of the gas. At critical heat flux, we have found a continuous transition to the state with a low-density, hot gas on one side of the movable wall and a dense, cold gas on the other side. Molecular dynamic simulations of the soft-sphere fluid confirm the existence of the transition in the interacting system. We introduce a stationary state Helmholtz-like function whose minimum determines the stable positions of the internal wall. This transition can be used as a paradigm of transitions in stationary states and the Helmholtz-like function as a paradigm of the thermodynamic description of these states
    • …
    corecore