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For the consensus problems of high-order linear multiagent systems with time-varying delays in directed topologies, the LMI
based-consensus criterion and NLMI-based consensusabilization (protocol parameters design that makes the multiagent systems
achieve consensus) are investigated. Improved Lyapunov-Krasovskii functional is used for establishing the consensus convergence
criteria and deriving the corresponding consensus protocol. In order to reduce the conservativeness, some proper free-weighting
matrices are added into the derivative of Lyapunov-Krasovskii functional and that only keeps one necessary zoom. The numerical
and simulation examples are given to demonstrate the effectiveness of the theoretical results. Compared with existing literatures,
the convergence criterion and protocol design proposed have lower conservativeness.

1. Introduction

Recently, much attention is drawn to the consensus problem
in multiagent systems [1–3], due to its widely applications
ranging from rendezvous [4], flocking [5], formation control
[6] to fusion estimation [7]. Furthermore, communication
delays in consensus problems are also taken into account,
for example, due to the communication congestions or
retransmissions.

The study for consensus in multiagent systems with
time delays started at first-order integrator systems (e.g., [8–
14]), some of which were generalized to second-order (e.g.,
[15–23]) or high-order (e.g., [24]) integrator systems then.
Nevertheless, the system matrix in those systems is a special
companion formmatrix. Therefore, it is valuable to study the
consensus problems of high-order (some paper called it high
dimensional) linear systems with time-varying delays.

Compared with the consensus studies on first-order,
second-order, and high-order integrator multiagent systems
with time delays, relatively few results were conducted in
those governed by high-order linear dynamics. For linear
SISO multiagent systems, the robust consensus schemes

with three kinds of feedback delays were investigated in
[25]; and the necessary and sufficient condition for the
existence of consensus solution for heterogeneous high-order
multiagent systems was given in [26]. It should be noted
that both of the above-mentioned studies were conducted in
the frequency domain. In terms of linear MIMO multiagent
systems, the time-domainmethods were employed to analyze
the consensus problems. In [27], the high-order linearMIMO
consensus problems with single constant time delay under
undirected communication topologies were converted into
low-dimensional robust stability problems with time delay.
The results showed that if the delay was less than a certain
bound, the consensus protocols always existed; while [27]
only gave the existence criteria on designing protocol param-
eters instead of algorithms for finding them. By projecting the
state onto two subspaces (consensus subspace and consensus
complement subspace), high-order linear MIMO consensus
problems with single time-varying delay were equivalent
simultaneous stabilization problems with low dimensions
in [28]. Therefore, a Lyapunov-Krasovskii functional was
given to establish both the consensus convergence and the
algorithm for protocol parameters design [28]. However,
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there are still three main aspects that could be enhanced. (1)
Conservativeness.The criterion had relatively more conserva-
tiveness caused by the structure of the Lyapunov-Krasovskii
functional and the zoom in the derivative of this functional.
(2) Constraint. All the derivatives 𝜇 of time delays were
restricted by 𝜇 < 1 in [28]. (3) Parameters. The method of
protocol design (the protocol has two parametermatrices and
sometimes both of them need to be designed at once) could
only calculate the second parameter matrix rather than both
parameter matrices.

In this paper, wewill provide free-weightingmatrices [29]
based consensus convergence criterion in high-order linear
multiagent systems with single time-varying delay under
directed topologies. Correspondingly, the protocol parameter
matrices will be designed by solving NLMIs (nonlinear
matrix inequalities). It should be noted that in undirected
communicated topologies, the parameter matrices can be
designedwithout constraining the structures for the solutions
on NLMIs; while in directed topologies, some parts of
those solutions should be determined in a specific form;
otherwise, some nonlinear equality constraints will be added
into these NLMIs, which is going tomake them hard to solve.
Even though we determine the structures of some solutions
matrices for directed topologies, the results are better than
those in [28], which used stronger constraints in solutions as
well as a more conservative Lyapunov-Krasovskii functional.

Compared with [28], our results have three improve-
ments. (1) Conservativeness. By optimizing the structure
of Lyapunov-Krasovskii functional and adding proper free-
weighting matrices, our criterion has less conservativeness.
(2) Constraint. Our criterion could permit the case 𝜇 ≥ 1,
even when 𝜇 is unknown (3) Parameters. Both two parameter
matrices can be calculated in the design of protocol could
calculate directly, and for the second parameter matrix
design, ourmethod can give a feasible solution in larger time-
delay bounds.

Throughout this paper, the notation represents the sym-
metric part in a symmetric matrix; D > (≥, <, ≤)0 denotes
that the matrix D is positive definite (positive semidefinite,
negative definite, negative semidefinite); ⊗ denotes the Kro-
necker product; 0 can be an appropriate dimensions zero
matrix or vector; for any complex vector x, any real matrix
D and 𝜆 ∈ C, we denote x̂ = [Re (x)𝑇, Im (x)𝑇]𝑇, ΛD =

diag{D,D}, and Υ
𝜆

= [
Re(𝜆)I

𝑛
− Im(𝜆)I

𝑛

Im(𝜆)I
𝑛

Re(𝜆)I
𝑛

], where I
𝑛
is an

identity matrix with 𝑛 × 𝑛 dimensions.

2. Preliminaries and Problem Description

Let G = (V,E,A) be a directed simple graph of order
𝑁(𝑁 > 1), where V = {𝜐

1
, 𝜐
2
, . . . , 𝜐

𝑁
} denotes the nodes

set, E ⊂ V × V is the edges set, and A = [𝑎
𝑖𝑗
] ∈ R𝑁×𝑁 is

the weighted adjacency matrix with 𝑎
𝑖𝑗
≥ 0, where 𝑎

𝑖𝑗
> 0 if

and only if edge (𝜐
𝑗
, 𝜐
𝑖
) ∈ E. As G is simple, 𝑎

𝑖𝑖
= 0 holds

for all 𝑖 ∈ {1, 2, . . . , 𝑁}. The neighbors of 𝜐
𝑖
is defined as

N
𝑖
= {𝜐
𝑗
∈ V | (𝜐

𝑗
, 𝜐
𝑖
) ∈ E}. The in-degree of the node 𝜐

𝑖

are defined as 𝑑
𝑖𝑛
(𝜐
𝑖
) = ∑
𝜐
𝑗
∈N
𝑖

𝑎
𝑖𝑗
.The degree matrix ofG is a

diagonal matrixD = [𝑑
𝑖𝑗
], where 𝑑

𝑖𝑗
= 0 (𝑖 ̸= 𝑗), 𝑑

𝑖𝑖
= 𝑑
𝑖𝑛
(𝜐
𝑖
).

Then Laplacian matrix ofG is defined asL = [𝑙
𝑖𝑗
] = D −A.

Lemma 1 (see [28]). The Laplacian matrixL ofG satisfies

(1) L at least has one zero eigenvalue, and 1
𝑁

is the
associated right eigenvector;

(2) if G has a spanning tree, then 0 is a simple eigenvalue
ofL, and all the other𝑁− 1 eigenvalues have positive
real parts;

(3) if G does not have a spanning tree, then L at least
has two zero eigenvalueswith the geometricmultiplicity
being not less than 2.

Lemma 2 (Schur Complement [24]). For a given symmetric
matrix Z with the form Z = Z𝑇 = [

Z
11

Z
12

⋆ Z
22

], Z
11

∈ R𝑟×𝑟, Z
12

∈

R𝑟×(𝑛−𝑟), Z
22

∈ R(𝑛−𝑟)×(𝑛−𝑟), then Z < 0 if and only if Z
11

< 0,
Z
22

− Z𝑇
12
Z−1
11
Z
12

< 0 or Z
22

< 0, Z
11

− Z
12
Z−1
11
Z𝑇
12

< 0.

In this paper, we consider a group of 𝑁 agents whose
dynamics is described by high-order linear systems in
continuous-time domain:

ẋ
𝑖 (𝑡) = Ax

𝑖 (𝑡) + Bu
𝑖 (𝑡) , 𝑖 = 1, 2, . . . , 𝑁, (1)

where x
𝑖
(𝑡) = [𝑥

(1)

𝑖
(𝑡) 𝑥
(2)

𝑖
(𝑡) ⋅ ⋅ ⋅ 𝑥

(𝑛)

𝑖
(𝑡)]
𝑇

is the state of
agent 𝑖 and u

𝑖
(𝑡) ∈ R𝑝 is the consensus protocol, A ∈ R𝑛×𝑛,

B ∈ R𝑛×𝑝.
We considered a class of protocols as follows:

u
𝑖 (𝑡) = K

1
x
𝑖 (𝑡) + K

2
∑
𝜐
𝑗
∈N
𝑖

𝑎
𝑖𝑗
(x
𝑗 (𝑡 − 𝜏 (𝑡)) − x

𝑖 (𝑡 − 𝜏 (𝑡))) ,

(2)

where K
1
,K
2
∈ R𝑝×𝑛, 𝜏(𝑡) ∈ [0, ℎ], ̇𝜏(𝑡) ∈ [0, 𝜇].

Let x(𝑡) = [x𝑇
1
(𝑡) x𝑇
2
(𝑡) ⋅ ⋅ ⋅ x𝑇

𝑁
(𝑡)]
𝑇

. With protocol (2),
the dynamics of multiagent systems is

ẋ (𝑡) = (I
𝑁
⊗ (A + BK

1
)) x (𝑡)

− (L ⊗ BK
2
) x (𝑡 − 𝜏 (𝑡)) , 𝑡 ∈ [0, +∞) ,

x (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−ℎ, 0) ,

(3)

where 𝜙(𝑡) is a continuously differentiable initial function.

Definition 3 (consensus). For given K
1
,K
2
, the multiagent

systems (3) achieve consensus if and only if for all 𝑖 ̸= 𝑗,
lim
𝑡→+∞

‖x
𝑖
(𝑡) − x

𝑗
(𝑡)‖ = 0.

Definition 4 (consensusabilization). Multiagent systems are
said to be consensusabilized by K

1
and/or K

2
if and only

if the K
1
and/or K

2
make the multiagent systems achieve

consensus.

3. Main Results

In this section, the consensus convergence criterion and
protocol parameters design method for high-order linear
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multiagent systems with time-varying delays in directed
topologies are provided.

Lemma 5 (see [28]). Dynamics (3) achieves consensus if and
only if

Δ̇
𝑖 (𝑡) = (A + BK

1
) Δ
𝑖 (𝑡)

− 𝜆L(𝑖+1)BK2Δ 𝑖 (𝑡 − 𝜏 (𝑡)) , 𝑖 = 1, . . . , 𝑁 − 1
(4)

are asymptotically stable, where 𝜆L𝑗 is the 𝑗th eigenvalue of the
Laplacian Matrix L corresponding to G, and 0 = Re(𝜆L1) ≤

Re(𝜆L2) ≤ ⋅ ⋅ ⋅ ≤ Re(𝜆LN).

Remark 6. This necessary and sufficient condition converts
the consensus problem in dynamics (3) into a stability
problem of dynamics (4). According to Lemma 1, if G has a
spanning tree, there is no 𝜆L𝑖 = 0 (𝑖 = 2, . . . , 𝑁). Therefore,
K
2
can make it possible to stabilize systems (4); while if G

does not have a spanning tree, then L at least has two zero
eigenvalues.Without loss of generality, we assume that 𝜆L2 =

0. Thus, (4) can be rewritten as

Δ̇
2 (𝑡) = (A + BK

1
) Δ
2 (𝑡) ,

Δ̇
3 (𝑡) = (A + BK

1
) Δ
3 (𝑡) − 𝜆L3BK2Δ 3 (𝑡 − 𝜏 (𝑡)) ,

...

Δ̇
𝑁 (𝑡) = (A + BK

1
) Δ
𝑁 (𝑡) − 𝜆L𝑁BK2Δ𝑁 (𝑡 − 𝜏 (𝑡)) .

(5)

If (4) is asymptotically stable, A + BK
1
should be Hurwitz.

In this case, multiagent systems (3) can achieve consensus
even if there is no cooperation at all. Therefore, Lemma 5
is adequate to the case with or without spanning trees
in communication topology. Therefore, the connectivity
assumptions can be neglected.

3.1. Consensus Convergence Criteria

Theorem 7. Given the upper bound in communication delay ℎ
and its derivative 𝜇, multiagent systems (3) achieve consensus
if there exist proper-dimensional P

𝑖
= P𝑇
𝑖
> 0, Q

𝑖
= Q𝑇
𝑖
≥ 0,

R
𝑖
= R𝑇
𝑖
≥ 0, Z

𝑖
= Z𝑇
𝑖
> 0, X

𝑖
= X𝑇
𝑖
≥ 0 and free-weighting

matrices

N
𝑖
= [

[

N
𝑖1

N
𝑖2

N
𝑖3

]

]

, S
𝑖
= [

[

S
𝑖1

S
𝑖2

S
𝑖3

]

]

, 𝑖 = 1, . . . , 𝑁 − 1 (6)

such that the following LMIs hold:

Ψ
𝑖1
= [

X
𝑖
N
𝑖

⋆ Z
𝑖

] ≥ 0, Ψ
𝑖2
= [

X
𝑖
S
𝑖

⋆ Z
𝑖

] ≥ 0,

Ψ
𝑖3
= [

Φ
𝑖
ℎÃ𝑇
𝑖
Z
𝑖

⋆ −ℎZ
𝑖

] < 0,

(7)

whereΦ
𝑖
= Φ
𝑖1
+ Φ
𝑖2
+ Φ𝑇
𝑖2
+ ℎX
𝑖

Φ
𝑖1

= [
P𝑖ΛA+BK

1

+ Λ
𝑇

A+BK
1

P𝑖 +Q𝑖 + R𝑖 −Υ𝜆L(𝑖+1)P𝑖ΛBK2 0
⋆ − (1 − 𝜇)Q𝑖 0
⋆ ⋆ −R𝑖

] ,

Φ
𝑖2
= [N𝑖 −N

𝑖
+ S
𝑖
−S
𝑖] ,

Ã
𝑖
= [ΛA+BK

1

−Υ
𝜆L(𝑖+1)

Λ BK
2

0] .
(8)

Proof. Since (4) contains complex vectors and matrices, it
is required to be transformed into the following form by
decompositing the real and imaginary parts:

̇̂
Δ
𝑖 (𝑡) = ΛA+BK

1

Δ̂
𝑖 (𝑡)

− Υ
𝜆L(𝑖+1)

Λ BK
2

Δ̂
𝑖 (𝑡 − 𝜏 (𝑡)) , 𝑖 = 1, . . . , 𝑁 − 1.

(9)

Define the following𝑁−1 quadratic Lyapunov-Krasovs-
kii functional candidates:

𝑉
𝑖 (𝑡) = 𝑉

𝑖1 (𝑡) + 𝑉
𝑖2 (𝑡) + 𝑉

𝑖3 (𝑡) + 𝑉
𝑖4 (𝑡) , 𝑖 = 1, . . . , 𝑁 − 1,

(10)

where 𝑉
𝑖1
(𝑡) = Δ̂𝑇

𝑖
(𝑡)P
𝑖
Δ̂
𝑖
(𝑡), 𝑉
𝑖2
(𝑡) = ∫

𝑡

𝑡−𝜏(𝑡)
Δ̂𝑇
𝑖
(𝑠)Q
𝑖
Δ̂
𝑖
(𝑠)𝑑𝑠,

𝑉
𝑖3
(𝑡) = ∫

𝑡

𝑡−ℎ
Δ̂𝑇
𝑖
(𝑠)R
𝑖
Δ̂
𝑖
(𝑠)𝑑𝑠, 𝑉

𝑖4
(𝑡) = ∫

0

−ℎ
∫
𝑡

𝑡+𝜃

̇̂
Δ
𝑇

𝑖
(𝑠)Z
𝑖

̇̂
Δ
𝑖
(𝑠)𝑑𝑠

𝑑𝜃, and P
𝑖
= P𝑇
𝑖
> 0,Q

𝑖
= Q𝑇
𝑖
≥ 0, R

𝑖
= R𝑇
𝑖
≥ 0, Z

𝑖
= Z𝑇
𝑖
> 0,

X
𝑖
= X𝑇
𝑖
≥ 0, 𝑖 = 1, . . . , 𝑁 − 1.

By Newton-Leibniz formula, for any given free-weighting
matrices with proper dimensions

N
𝑖
= [

[

N
𝑖1

N
𝑖2

N
𝑖3

]

]

, S
𝑖
= [

[

S
𝑖1

S
𝑖2

S
𝑖3

]

]

, 𝑖 = 1, . . . , 𝑁 − 1, (11)

we have

�̃�
𝑖1 (𝑡) = 2𝜁

𝑇

𝑖1
(𝑡)N𝑖 [Δ̂ 𝑖 (𝑡) − Δ̂

𝑖 (𝑡 − 𝜏 (𝑡))

−∫
𝑡

𝑡−𝜏(𝑡)

̇̂
Δ
𝑖 (𝑠) 𝑑𝑠] = 0,

�̃�
𝑖2 (𝑡) = 2𝜁

𝑇

𝑖1
(𝑡) S𝑖 [Δ̂ 𝑖 (𝑡 − 𝜏 (𝑡)) − Δ̂

𝑖 (𝑡 − ℎ)

−∫
𝑡

𝑡−𝜏(𝑡)

̇̂
Δ
𝑖 (𝑠) 𝑑𝑠] = 0,

(12)

where 𝜁
𝑖1
(𝑡) = [Δ̂𝑇

𝑖
(𝑡), Δ̂𝑇
𝑖
(𝑡 − 𝜏(𝑡)), Δ̂𝑇

𝑖
(𝑡 − ℎ)]

𝑇.
For any appropriate X

𝑖
= X𝑇
𝑖
≥ 0, 𝑖 = 2, . . . , 𝑁, (13) holds

�̃�
𝑖3 (𝑡) = ℎ𝜁

𝑇

𝑖1
(𝑡)X𝑖𝜁𝑖1 (𝑡) − ∫

𝑡

𝑡−𝜏(𝑡)

𝜁
𝑇

𝑖1
(𝑡)X𝑖𝜁𝑖1 (𝑡) 𝑑𝑠

− ∫
𝑡−𝜏(𝑡)

𝑡−ℎ

𝜁
𝑇

𝑖1
(𝑡)X𝑖𝜁𝑖1 (𝑡) 𝑑𝑠 = 0.

(13)
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Taking the time derivative of 𝑉
𝑖
(𝑡) along the trajectory of

(9), it is obtained that

�̇�
𝑖1 (𝑡) = Δ̂

𝑇

𝑖
(𝑡) [P𝑖ΛA+BK

1

+ Λ
𝑇

A+BK
1

P
𝑖
] Δ̂
𝑖 (𝑡)

− 2Δ̂
𝑇

𝑖
(𝑡)P𝑖Υ𝜆L(𝑖+1)Λ BK

2

Δ̂
𝑖 (𝑡 − 𝜏 (𝑡)) ,

(14)

�̇�
𝑖2 (𝑡) = Δ̂

𝑇

𝑖
(𝑡)Q𝑖Δ̂ 𝑖 (𝑡)

− (1 − ̇𝜏 (𝑡)) Δ̂
𝑇

𝑖
(𝑡 − 𝜏 (𝑡))Q𝑖Δ̂ 𝑖 (𝑡 − 𝜏 (𝑡)) ,

(15)

�̇�
𝑖3 (𝑡) = Δ̂

𝑇

𝑖
(𝑡)R𝑖Δ̂ 𝑖 (𝑡) − Δ̂

𝑇

𝑖
(𝑡 − ℎ)R𝑖Δ̂ 𝑖 (𝑡 − ℎ) , (16)

�̇�
𝑖4 (𝑡) = ℎ[ΛA+BK

1

Δ̂
𝑖 (𝑡) − Υ

𝜆L(𝑖+1)
Λ BK

2

Δ̂
𝑖 (𝑡 − 𝜏 (𝑡))]

𝑇

Z
𝑖

× [ΛA+BK
1

Δ̂
𝑖 (𝑡) − Υ

𝜆L(𝑖+1)
Λ BK

2

Δ̂
𝑖 (𝑡 − 𝜏 (𝑡))]

− ∫
𝑡

𝑡−ℎ

̇̂
Δ
𝑇

𝑖
(𝑠)Z𝑖

̇̂
Δ
𝑖 (𝑠) 𝑑𝑠.

(17)

Adding 3 zero items into the derivative, we have

�̇�
𝑖 (𝑡) = �̇�

𝑖1 (𝑡) + �̇�
𝑖2 (𝑡) + �̇�

𝑖3 (𝑡) + �̇�
𝑖4 (𝑡)

+ �̃�
𝑖1 (𝑡) + �̃�

𝑖2 (𝑡) + �̃�
𝑖3 (𝑡) .

(18)

With ̇𝜏(𝑡) ≤ 𝜇, (18) can be zoomed; we can utilize the
decomposition of

∫
𝑡

𝑡−ℎ

̇̂
Δ
𝑇

𝑖
(𝑠)Z𝑖

̇̂
Δ
𝑖 (𝑠) 𝑑𝑠 = ∫

𝑡

𝑡−𝜏(𝑡)

̇̂
Δ
𝑇

𝑖
(𝑠)Z𝑖

̇̂
Δ
𝑖 (𝑠) 𝑑𝑠

+ ∫
𝑡−𝜏(𝑡)

𝑡−ℎ

̇̂
Δ
𝑇

𝑖
(𝑠)Z𝑖

̇̂
Δ
𝑖 (𝑠) 𝑑𝑠

(19)

in (17) as a contributor to make the zoomed (18) be quadratic
forms:

�̇�
𝑖 (𝑡) ≤ 𝜁

𝑇

𝑖1
(𝑡) (Φ𝑖1 + ℎÃ𝑇

𝑖
Z
𝑖
Ã
𝑖
) 𝜁
𝑖1 (𝑡)

− ∫
𝑡

𝑡−𝜏(𝑡)

𝜁
𝑇

𝑖2
(𝑡, 𝑠) [

X
𝑖
N
𝑖

⋆ Z
𝑖

] 𝜁
𝑖2 (𝑡, 𝑠) 𝑑𝑠

− ∫
𝑡−𝜏(𝑡)

𝑡−ℎ

𝜁
𝑇

𝑖2
(𝑡, 𝑠) [

X
𝑖
S
𝑖

⋆ Z
𝑖

] 𝜁
𝑖2 (𝑡, 𝑠) 𝑑𝑠,

(20)

where 𝜁
𝑖2
(𝑡, 𝑠) = [𝜁𝑇

𝑖1
(𝑡),

̇̂
Δ
𝑇

𝑖
(𝑠)]
𝑇. For formula (20), if Φ

𝑖1
+

ℎÃ𝑇
𝑖
Z
𝑖
Ã
𝑖
< 0 and

Ψ
𝑖1
= [

X
𝑖
N
𝑖

⋆ Z
𝑖

] ≥ 0, Ψ
𝑖2
= [

X
𝑖
S
𝑖

⋆ Z
𝑖

] ≥ 0, (21)

then �̇�
𝑖
(𝑡) < −𝜀‖Δ

𝑖
(𝑡)‖
2 holds for any 𝜀 > 0, 𝑖 = 1, . . . , 𝑁 − 1.

By Lemma 2, Φ
𝑖1
+ ℎÃ𝑇
𝑖
Z
𝑖
Ã
𝑖
< 0 equals to Ψ

𝑖3
< 0. Thus,

if (7), holds then (9) is asymptotically stable and multiagent
systems (3) achieve consensus.

Remark 8. Theorem 7 has only one zoom in the derivative
of Lyapunov-Krasovskii functional which is necessary, but

Theorem 2 in [28] has three zooms, which make the criterion
have more conservativeness. Numerical examples and Sim-
ulations, in Section 4.1, will validate that our Theorem 7 has
less conservativeness.

Remark 9. Setting Q
𝑖
= 0 for all 𝑖 ∈ {1, 2, . . . , 𝑁 − 1}, we

can get the delay-dependent and rate-independent consensus
convergence criterion; while Theorem 2 in [28] requires that
the upper bounds of 𝜇 are limited by 𝜇 < 1.

3.2. Protocol Parameters Design Algorithm in Undirected
Communication Topology. In this section, the algorithms in
designing protocol parameter matrices in (2) under undi-
rected communication topologies are investigated (including
single parameter matrix design and both parameter matrices
design).

Theorem 10 (double protocol parameter matrices design
for undirected communication topology). Assume that the
topology G is an undirected graph. Given the upper bound
in communication delay ℎ and its derivative 𝜇, if there exist
proper-dimensional L = L𝑇 > 0,W

𝑖
= W𝑇
𝑖
≥ 0, U

𝑖
= U𝑇
𝑖
≥ 0,

G
𝑖
= G𝑇
𝑖
≥ 0

Y
𝑖
= Y𝑇
𝑖
=

[
[
[
[

[

Y(𝑖)
11

Y(𝑖)
12

Y(𝑖)
13

⋆ Y(𝑖)
22

Y(𝑖)
23

⋆ ⋆ Y(𝑖)
33

]
]
]
]

]

≥ 0 (22)

and free-weighting matrices V
1
,V
2
,

M
𝑖
= [

[

M
𝑖1

M
𝑖2

M
𝑖3

]

]

, T
𝑖
= [

[

T
𝑖1

T
𝑖2

T
𝑖3

]

]

, 𝑖 = 1, . . . , 𝑁 − 1 (23)

such that the following NLMIs hold:

Ψ
𝑖1
= [

Y
𝑖

M
𝑖

⋆ LG−1
𝑖
L
] ≥ 0, Ψ

𝑖2
= [

Y
𝑖

T
𝑖

⋆ LG−1
𝑖
L
] ≥ 0,

(24)

Ψ
𝑖3
=

[
[
[
[
[
[
[
[

[

Π
(𝑖)

11
Π
(𝑖)

12
Π
(𝑖)

13
ℎLA𝑇 + ℎV𝑇

1
B𝑇

⋆ Π
(𝑖)

22
Π
(𝑖)

23
−ℎ𝜆L(𝑖+1)V

𝑇

2
B𝑇

⋆ ⋆ Π
(𝑖)

33
0

⋆ ⋆ ⋆ −ℎG
𝑖

]
]
]
]
]
]
]
]

]

< 0, (25)
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𝑖 = 1, . . . , 𝑁 − 1, where

Π
(𝑖)

11
= AL + LA𝑇 + BV

1
+ V𝑇
1
B𝑇 +W

𝑖

+ U
𝑖
+M
𝑖1
+M𝑇
𝑖1
+ ℎY(𝑖)
11
,

Π
(𝑖)

12
= − 𝜆L(𝑖+1)BV2 −M

𝑖1
+ T
𝑖1
+M𝑇
𝑖2
+ ℎY(𝑖)
12
,

Π
(𝑖)

13
= − T

𝑖1
+M𝑇
𝑖3
+ ℎY(𝑖)
13
,

Π
(𝑖)

22
= − (1 − 𝜇)W

𝑖
−M
𝑖2
−M𝑇
𝑖2
+ T
𝑖2
+ T𝑇
𝑖2
+ ℎY(𝑖)
22
,

Π
(𝑖)

23
= − T

𝑖2
−M𝑇
𝑖3
+ T𝑇
𝑖3
+ ℎY(𝑖)
23
,

Π
(𝑖)

33
= − U

𝑖
− T
𝑖3
− T𝑇
𝑖3
+ ℎY(𝑖)
33
,

(26)

then multiagent systems (1) can be consensusabilized by proto-
col (2), and the parameters are fromK

1
= V
1
L−1,K

2
= V
2
L−1.

Proof. If multiagent systems (3) achieve consensus, then
according to Theorem 7, inequalities (7) hold. Note that L
is symmetrical due to a undirected G; we can halve the
dimension of Ψ

𝑖1
and Ψ

𝑖2
in (7). Further, Ψ

𝑖3
can be rewritten

as follows:

Ψ
𝑖3
= [

Φ
𝑖
ℎÃ𝑇
𝑖
Z
𝑖

⋆ −ℎZ
𝑖

] < 0, (27)

where Φ
𝑖
= Φ
𝑖1
+ Φ
𝑖2
+ Φ𝑇
𝑖2
+ ℎX
𝑖

Φ
𝑖1

= [
P𝑖 (A + BK1) + (A + BK1)

𝑇P𝑖 +Q𝑖 + R𝑖 −𝜆L(𝑖+1)P𝑖BK2 0
⋆ − (1 − 𝜇)Q𝑖 0
⋆ ⋆ −R𝑖

] ,

Φ
𝑖2
= [N𝑖 −N

𝑖
+ S
𝑖
−S
𝑖] ,

Ã
𝑖
= [A + BK

1
−𝜆L(𝑖+1)BK2 0] .

(28)

Then employing the congruent transformation with
diag{P−1

𝑖
,P−1
𝑖
,P−1
𝑖
,Z−1
𝑖
} for Ψ

𝑖3
in (27), we can derive

diag {P−1
𝑖
,P−1
𝑖
,P−1
𝑖
,Z−1
𝑖
}
𝑇

Ψ
𝑖3
diag {P−1

𝑖
,P−1
𝑖
,P−1
𝑖
,Z−1
𝑖
} < 0,

(29)

where 𝑖 = 1, . . . , 𝑁 − 1. Set P−1
1

= P−1
2

= ⋅ ⋅ ⋅ = P−1
𝑁−1

= L, and
letW
𝑖
= LQ
𝑖
L, U
𝑖
= LR
𝑖
L, G
𝑖
= Z−1
𝑖

and

Y
𝑖
= LX
𝑖
L =

[
[
[
[

[

Y(𝑖)
11

Y(𝑖)
12

Y(𝑖)
13

⋆ Y(𝑖)
22

Y(𝑖)
23

⋆ ⋆ Y(𝑖)
33

]
]
]
]

]

≥ 0,

M
𝑖
= diag {L, L, L}N

𝑖
L = [

[

M
𝑖1

M
𝑖2

M
𝑖3

]

]

,

T
𝑖
= diag {L, L, L} S

𝑖
L = [

[

T
𝑖1

T
𝑖2

T
𝑖3

]

]

,

(30)

where 𝑖 = 1, . . . , 𝑁 − 1 (note that the P
𝑖
,Q
𝑖
,R
𝑖
,Z
𝑖
,X
𝑖
,N
𝑖
, S
𝑖

are half dimensional compared to those in Theorem 7).
Subsequently, with K

1
L = V

1
and K

2
L = V

2
, formula (29)

can be rewritten as (25). Similarly, by using congruent trans-
formationwith diag{L, L, L} in dimension-halvedΨ

𝑖1
andΨ

𝑖2
,

respectively, inequalities (24) can be derived. Note that (24)
and (25) are equivalent to (7); the protocol parameters are
from K

1
= V
1
L−1, K

2
= V
2
L−1.

Remark 11. To avoid divergence of the multiagent systems,
sometimes we need to design K

1
,K
2
at the same time, even

though it is proven in [28] that the K
1
is responsible for the

state trajectories of those multiagent systems which achieve
consensus. NLMIs (24) and (25) can be solved by using Cone
Complementarity Linearization (CCL) method (see [30, 31]).

Remark 12. In order to design theK
2
only, we can setK

1
equal

to a certain constant matrix in Theorem 10. Accordingly, our
Theorem 10 can be compared withTheorem 3 in [28].

3.3. Protocol Parameters Design Algorithm in Directed Com-
munication Topology. In this section, the algorithms in
designing protocol parameter matrices in (2) under directed
communication topologies are proposed.

Note that if the topology is directed, the structure of free-
weighting matrices V

1
,V
2
is limited by ΛK

1

= V
1
L−1 and

ΛK
2

= V
2
L−1 (actually, the limitation caused by diagonal

structures ofΛK
1

, ΛK
2

).Thatmeans even thoughwe calculate
the free-weighting matrices V

1
,V
2
by solving NLMIs, we

could not always acquire a diagonal structured ΛK
1

, ΛK
2

.
More importantly, both the diagonal blocks in K

1
(as well

as in K
2
) are required to be equal. This will add nonlinear

equality constraints in NLMIs, which are hard to solve.
Therefore, we determine the structures of V

1
,V
2
as well

as L in advance. Theorem 13 gives the corresponding NLMIs.

Theorem 13 (double protocol parameter matrices design for
directed communication topology). Assume the topology G
is a directed graph. Given the upper bound in communication
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delay ℎ and its derivative 𝜇, if there exist proper-dimensional
L = L𝑇 > 0,W

𝑖
= W𝑇
𝑖
≥ 0, U

𝑖
= U𝑇
𝑖
≥ 0, G

𝑖
= G𝑇
𝑖
≥ 0

Y
𝑖
= Y𝑇
𝑖
=

[
[
[
[

[

Y(𝑖)
11

Y(𝑖)
12

Y(𝑖)
13

⋆ Y(𝑖)
22

Y(𝑖)
23

⋆ ⋆ Y(𝑖)
33

]
]
]
]

]

≥ 0 (31)

and free-weighting matrices V
1
,V
2
,

M
𝑖
=
[
[
[

[

M
𝑖1

M
𝑖2

M
𝑖3

]
]
]

]

, T
𝑖
=
[
[
[

[

T
𝑖1

T
𝑖2

T
𝑖3

]
]
]

]

, 𝑖 = 1, . . . , 𝑁 − 1 (32)

such that the following NLMIs hold:

Ψ
𝑖1
= [

[

Y
𝑖

M
𝑖

⋆ LG−1
𝑖
L
]

]

≥ 0, Ψ
𝑖2
= [

[

Y
𝑖

T
𝑖

⋆ LG−1
𝑖
L
]

]

≥ 0,

Ψ
𝑖3
=

[
[
[
[
[
[
[
[
[
[

[

Π
(𝑖)

11
Π
(𝑖)

12
Π
(𝑖)

13
ℎ(ΛAL)

𝑇

+ ℎ(Λ BV1)
𝑇

⋆ Π
(𝑖)

22
Π
(𝑖)

23
−ℎ(Υ
𝜆L(𝑖+1)

Λ BV2)
𝑇

⋆ ⋆ Π
(𝑖)

33
0

⋆ ⋆ ⋆ −ℎG
𝑖

]
]
]
]
]
]
]
]
]
]

]

< 0,

(33)

𝑖 = 1, . . . , 𝑁 − 1, where

Π
(𝑖)

11
= ΛAL + (ΛAL)

𝑇

+ Λ BV1 + (Λ BV1)
𝑇

+W
𝑖

+ U
𝑖
+M
𝑖1
+M𝑇
𝑖1
+ ℎY(𝑖)
11
,

Π
(𝑖)

12
= − Υ

𝜆L(𝑖+1)
Λ BV2 −M

𝑖1
+ T
𝑖1
+M𝑇
𝑖2
+ ℎY(𝑖)
12
,

Π
(𝑖)

13
= − T

𝑖1
+M𝑇
𝑖3
+ ℎY(𝑖)
13
,

Π
(𝑖)

22
= − (1 − 𝜇)W

𝑖
−M
𝑖2
−M𝑇
𝑖2
+ T
𝑖2
+ T𝑇
𝑖2
+ ℎY(𝑖)
22
,

Π
(𝑖)

23
= − T

𝑖2
−M𝑇
𝑖3
+ T𝑇
𝑖3
+ ℎY(𝑖)
23
,

Π
(𝑖)

33
= − U

𝑖
− T
𝑖3
− T𝑇
𝑖3
+ ℎY(𝑖)
33

(34)

and the structures of L,V
1
,V
2
are

L = [

[

L
11

L
12

⋆ L
22

]

]

> 0, V
1
=
[
[

[

V(1)
11

V(1)
12

V(1)
21

V(1)
22

]
]

]

,

V
2
=
[
[

[

V(2)
11

V(2)
12

V(2)
21

V(2)
22

]
]

]

,

(35)

1 2

4 3
𝒢a

(a)

1 2

4 3
𝒢b

(b)

Figure 1: Two directed graphs.

where L
11

= L
22
, L
12

= 0, V(𝑖)
11

= V(𝑖)
22

= 0, V(𝑖)
12

= V(𝑖)
21

= 0,
𝑖 = 1, 2, then multiagent systems (1) can be consensusablized
by protocol (2), and the parameters are from K

1
= V(1)
11
L−1
11
,

K
2
= V(2)
11
L−1
11
.

Proof. The process of proof is similar to that in Theorem 10.
The differences are as follows: (1) the dimension ofmatrices is
doubled compared to those inTheorem 10; (2) the structures
of L,V

1
,V
2
are restricted by (35) for the sake of eliminating

the nonlinear equality constraints.

Remark 14. Similar to Remark 11, we can set K
1
equal to a

certain constant matrix in Theorem 13 so that the K
2
can

be designed under the condition that K
1
has already been

chosen.

4. Numerical Examples and Simulations

In order to validate the theoretical results proposed in this
paper, numerical examples and simulations are involved to
illustrate the effectiveness. Figure 1 reveals some topologies
in multiagent systems. For simplicity, assume that their
adjacency matrices are limited to 0, 1 matrices.

4.1. Comparisons on Consensus Convergence Criteria. Firstly,
wewill compare the conservativeness of the criteria with [28].
Additionally, the applicability for unknown 𝜇 in our criterion
will be illustrated.

Consider multiagent systems (3) with the following
parameters:

A = [

[

0 1 0

0 0 1

−3 −1 −2

]

]

, B = [

[

0 0

0 1

1 0

]

]

, (36)

K
1
= [

3 1 2

−1 −1 −1
] , K

2
= [

0 0 1

5 4 1
] . (37)

The initial function is

𝜙 (𝑡) ≡ [𝜙
𝑇

1
(𝑡) , 𝜙
𝑇

2
(𝑡) , 𝜙
𝑇

3
(𝑡) , 𝜙
𝑇

4
(𝑡)]
𝑇

, 𝑡 ∈ [−ℎ, 0) , (38)
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Figure 2: State trajectories of 3rd-order multiagent systems in G
𝑎
with dynamics (36), protocol parameters (37), and communication delay

𝜏(𝑡) = 0.149/2 + (0.149/2) sin((2 × 0.9/0.149)𝑡).

where ℎ is the upper bound on communication delay 𝜏(𝑡) (see
formula (3)) and

𝜙
1 (𝑡) ≡

[

[

3

−9

−9

]

]

, 𝜙
2 (𝑡) ≡

[

[

−3

−3

−3

]

]

,

𝜙
3 (𝑡) ≡

[

[

−2

−2

−2

]

]

, 𝜙
4 (𝑡) ≡

[

[

3

3

3

]

]

.

(39)

Results of comparisons are shown in Table 1.

Remark 15. The comparison results illustrate that allowable
upper bound on communication delays given by Theorem 7

Table 1: Allowable upper bound on communication delay for third-
order linear multiagent systems with topologyG

𝑎
,G
𝑏
.

𝜇 = 0 𝜇 = 0.5 𝜇 = 0.9 Unknown 𝜇

[28, Theorem 2] G
𝑎

0.097 0.097 0.097 —
Theorem 7G

𝑎
0.151 0.149 0.149 0.149

[28, Theorem 2] G
𝑏

0.074 0.067 0.063 —
Theorem 7G

𝑏
0.084 0.080 0.080 0.080

is larger than those in [28] (to be more precise, ranging from
13.51% to 55.67%); the simulation results in Figure 2 validate
the effectiveness. More importantly, our criterion has more
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Figure 3: State trajectories of 3rd-order multiagent systems in G
𝑏
with protocol parameters (40) and (42) and communication delay 𝜏(𝑡) =

0.295/2 + (0.295/2) sin((2 × 0.9/0.295)𝑡).

advantages when 𝜇 becomes larger. Especially, unknown 𝜇 is
able to judge by our criterion.

For Theorem 2 in [28], the number of Lyapunov-
Krasovskii functional candidates is reduced to 2 with the
aim of saving computing time, even though this would lead
to some conservativeness. Similarly, in the current paper,
we could also reduce the candidates’ number to 2 to get a
higher computation efficiency. But still, for a more persuaded
comparison, we select the all (𝑁 − 1) Lyapunov-Krasovskii
functional candidates.

4.2. Validations for Protocol Design Algorithm. Firstly, our
Theorem 10 is proposed to design the parameter matrices
in protocol (2) under undirected communication topolo-
gies, including (1) calculating K

2
with a known K

1
, (the

comparisons with Theorem 3 in [28] are made in Table 2);
(2) determining both of the parameter matrices K

1
and K

2

(while in [28],K
1
could not be calculated automatically by its

theorems) and results are shown in Table 3.
Secondly, for directed communication topologies, the

parameter matrices of protocol (2) are determined by our
Theorem 13. Similarly, both cases (designing K

2
only or



Mathematical Problems in Engineering 9

0 1000 2000 3000 4000 5000 6000

0

1

2

3

4

5

Time

St
at

e 1 0
0.

5 1
1.

5 2
2.

5 3
3.

5 4
4.

5 5

0
1
2
3
4
5

Time

St
at

e 1

−1

−2

−3

−4

−5

−1

−2

−3

−4

−5

Agent 1
Agent 2

Agent 3
Agent 4

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

2

4

Time

St
at

e 2

−2

−4

−6

−8

−10

Agent 1
Agent 2

Agent 3
Agent 4

(b)

0 1000 2000 3000 4000 5000 6000

0

2

4

Time

St
at

e 3

−2

−4

−6

−8

−10

Agent 1
Agent 2

Agent 3
Agent 4

(c)

Figure 4: State trajectories of 3rd-order multiagent systems inG
𝑎
with protocol parameters design (ℎ = 0.1, 𝜇 = 0.9).

calculating K
1
,K
2
at the same time, see Tables 2 and 3) are

employed to validate the effectiveness of Theorem 13.
In this section, all the numerical examples and simulation

results share the same dynamics and initial function as
those in Section 4.1 (that is the multiagent systems (3) with
parameters (36) and initial function (38)).

In Table 2, the parameter matrix K
1
is determined as

K
1
= [

3 1 1

−5 −1 −2
] . (40)

As we can see in this table, for undirected topology G
𝑏
,

comparisons are made between [28, Theorem 3] and our
Theorem 10. Taking the situation 𝜇 = 0.9 as an example,
the allowable upper bound on communication delay when

designing a feasible K
2
in [28, Theorem 3] is ℎ = 0.026, and

the protocol parameter matrix is

K
2
= [

0 0 0.0866

−0.0020 0.2230 0
] . (41)

However, in our Theorem 10, the allowable upper bound
is ℎ = 0.295, which increases one order of magnitude than
that in [28, Theorem 3]. The protocol parameter matrix is

K
2
= [

0 0 0.254

−0.612 1.031 0
] , (42)

and the effectiveness is validated by simulations in Figure 3.
Similarly, for directed topology G

𝑎
, the comparisons

between [28, Theorem 3] and our Theorem 13 are made in
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Table 2: Protocol parameter K
2
designs for third-order linear multiagent systems with topologiesG

𝑎
,G
𝑏
in different ℎ and 𝜇.

𝜇 = 0.5 𝜇 = 0.9 Unknown 𝜇

[28, Theorem 3]G
𝑏

K
2

[

[

0 0 −5.7868

−2.7589 66.7789 0

]

]

[

[

0 0 0.0866

−0.0020 0.2230 0

]

]

—

ℎ 0.112 0.026 —

Theorem 10G
𝑏

K
2

[

[

0 0 0.260

−0.622 1.038 0

]

]

[

[

0 0 0.254

−0.612 1.031 0

]

]

[

[

0 0 0.277

−0.617 1.032 0

]

]

ℎ 0.294 0.295 0.295

[28, Theorem 3]G
𝑎

K
2

[

[

0 0 −0.0062

−0.0007 0.0357 0

]

]

— —

ℎ 0.064 — —

Theorem 13G
𝑎

K
2

[

[

0 0 0.7448

−1.1978 2.0811 0

]

]

[

[

0 0 0.4469

−1.3319 1.9809 0

]

]

[

[

0 0 0.4469

−1.3319 1.9809 0

]

]

ℎ 0.050 0.047 0.047

Table 3: Protocol parameters K
1
, K
2
designs for third-order linear multiagent systems with topologiesG

𝑎
,G
𝑏
in different ℎ and 𝜇.

𝜇 = 0.5 𝜇 = 0.9 Unknown 𝜇

Theorem 10G
𝑏
, ℎ = 0.1

K
1

[

[

3 1 −1.8610

−3.6186 −6.6369 −2

]

]

[

[

3 1 −1.8629

−3.5653 −6.5882 −2

]

]

[

[

3 1 −1.8581

−2.8522 −5.9851 −2

]

]

K
2

[

[

0 0 0.0001

0.0004 0.0013 0

]

]

[

[

0 0 0.0005

0.0002 0.0006 0

]

]

[

[

0 0 0.0009

0.0002 0.0010 0

]

]

Theorem 13G
𝑎
, ℎ = 0.1

K
1

[

[

3 1 1.9988

−1.0023 −3.2829 −2

]

]

[

[

3 1 1.9991

−1.0017 −3.2781 −2

]

]

[

[

3 1 1.9989

−1.0022 −3.3115 −2

]

]

K
2

[

[

0 0 0.00011

0.00014 −0.00027 0

]

]

[

[

0 0 0.00007

0.00007 −0.00008 0

]

]

[

[

0 0 0.00015

0.00023 −0.00049 0

]

]

Table 2; while it should be noted that in the situation 𝜇 = 0.5,
the allowable upper bound on communication delay in our
Theorem 13 is ℎ = 0.050, which is less than that in [28,
Theorem 3] (ℎ = 0.064). However, this just holds in the case
that 𝜇 is small. When 𝜇 becomes 0.9, [28, Theorem 3] cannot
find a feasible K

2
any more (actually, the allowable upper

bound on 𝜇 for [28, Theorem 3] is 0.766). Correspondingly,
we can see that the allowable upper bound for [28, Theorem
3] under communication topologyG

𝑏
experiences a dramatic

decrease when 𝜇 becomes larger. Therefore, [28, Theorem 3]
is not robust enough for 𝜇. By contrast, ℎ in our Theorem 13
is relatively stable when 𝜇 varies. For G

𝑏
, our Theorem 13

calculates the upper bound for communication delay ℎ =

0.294 in the situation 𝜇 = 0.5, while ℎ = 0.295 in 𝜇 = 0.9.
It seems unreasonable, but it does happen when solving the
NLMIs (24) and (25). This is because the CCL algorithm is
not globally optimal.

Table 3 gives the information about the results for
K
1
,K
2
designs under undirected communication topology

G
𝑏
(using Theorem 10) and directed communication topol-

ogy G
𝑎
(using Theorem 13), respectively. It should be noted

thatK
1
andK

2
are calculated at the same time rather thanK

1

is determined in advance. To validate the effectiveness of our

algorithms, we select the item with ℎ = 0.1, 𝜇 = 0.9 to carry
on the simulation, and

K
1
= [

3 1 1.9991

−1.0017 −3.2781 −2
] ,

K
2
= [

0 0 0.00007

0.00007 −0.00008 0
] .

(43)

Figure 4 shows the effectiveness in our results with time-
varying delay 𝜏(𝑡) = 0.1/2 + (0.1/2) sin((2 × 0.9/0.1)𝑡).

5. Conclusions

We investigated the consensus problems for high-order linear
multiagent systems with time varying delays, which include
a consensus convergence criterion and two protocol parame-
ters design methods (for undirected and directed communi-
cation topologies, resp.). Mainly, the following contributions
were concluded in this paper:

(1) a high-order linear multiagent systems consensus
convergence criterion is proposed. By optimizing
the structure on Lyapunov-Krasovskii functional and
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adding proper free-weighting matrices, the criterion
has less conservativeness than the existing results;

(2) the consensus convergence criterion is validated
when 𝜇 ≥ 1, and even can apply with a unknown 𝜇;
while [28] could only fit for 𝜇 < 1;

(3) the protocol parameters design algorithm can give the
two parameters, directly while the algorithm in [28]
could only give K

2
but the undetermined K

1
would

be set in advance;
(4) under the circumstance that the K

1
is determined in

advance, our theorems have less conservativeness and
more robustness when the derivative of communica-
tion delay varies.

However, for the parameters designing part, the struc-
tures of matrices V

1
,V
2
are constrained diagonal forms for

the sake of eliminating somenonlinear inequality constraints.
This has already brought some conservativeness because
some feasible solutions for NLMIs are excluded manually.
Therefore, the structure of V

1
,V
2
will be investigated further

so that our protocol parameters design could be better used
in directed topologies with less conservativeness.
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